4,698 research outputs found
Do the UK government's new Quality and Outcomes Framework (QOF) scores adequately measure primary care performance? A cross-sectional survey of routine healthcare data
BACKGROUND
General practitioners' remuneration is now linked directly to the scores attained in the Quality and Outcomes Framework (QOF). The success of this approach depends in part on designing a robust and clinically meaningful set of indicators. The aim of this study was to assess the extent to which measures of health observed in practice populations are correlated with their QOF scores, after accounting for the established associations between health outcomes and socio-demographics.
METHODS
QOF data for the period April 2004 to March 2005 were obtained for all general practices in two English Primary Care Trusts. These data were linked to data for emergency hospital admissions (for asthma, cancer, chronic obstructive pulmonary disease, coronary hear disease, diabetes, stroke and all other conditions) and all cause mortality for the period September 2004 to August 2005. Multilevel logistic regression models explored the association between health outcomes (hospital admission and death) and practice QOF scores (clinical, additional services and organisational domains), age, sex and socio-economic deprivation.
RESULTS
Higher clinical domain scores were generally associated with lower admission rates and this was significant for cancer and other conditions in PCT 2. Higher scores in the additional services domain were associated with higher admission rates, significantly so for asthma, CHD, stroke and other conditions in PCT 1 and cancer in PCT 2. Little association was observed between the organisational domain scores and admissions. The relationship between the QOF variables and mortality was less clear. Being female was associated with fewer admissions for cancer and CHD and lower mortality rates. Increasing age was mainly associated with an increased number of events. Increasing deprivation was associated with higher admission rates for all conditions and with higher mortality rates.
CONCLUSION
The associations between QOF scores and emergency admissions and mortality were small and inconsistent, whilst the impact of socio-economic deprivation on the outcomes was much stronger. These results have implications for the use of target-based remuneration of general practitioners and emphasise the need to tackle inequalities and improve the health of disadvantaged groups and the population as a whole
Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions
By using a symmetry motivated basis to evaluate local distortions against
pair distribution function data (PDF), we show without prior bias, that the
off-centre Ti displacements in the archetypal ferroelectric BaTiO3 are zone
centred and rhombohedral-like in nature across its known ferroelectric and
paraelectric phases. With our newly-gained insight we construct a simple Monte
Carlo (MC) model which captures our main experimental findings and demonstrate
how the rich crystallographic phase diagram of BaTiO3 emerges from correlations
of local symmetry-breaking distortions alone. Our results strongly support the
order-disorder picture for these phase transitions, but can also be reconciled
with the soft-mode theory of BaTiO3 that is supported by some spectroscopic
techniques.Comment: 5 pages, 3 figure
Bifurcated polarization rotation in bismuth-based piezoelectrics
ABO3 perovskite-type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure, strain, electric, or magnetic fields. Some solid solutions show remarkably enhanced physical properties including colossal magnetoresistance or giant piezoelectricity. It has been recognized that structural distortions, competing on the local level, are key to understanding and tuning these remarkable properties, yet, it remains a challenge to experimentally observe such local structural details. Here, from neutron pair-distribution analysis, a temperature-dependent 3D atomic-level model of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 (NBT) is reported. The statistical analysis of this model shows how local distortions compete, how this competition develops with temperature, and, in particular, how different polar displacements of Bi3+ cations coexist as a bifurcated polarization, highlighting the interest of Bi-based materials in the search for new lead-free piezoelectrics
Human PrimPol mutation associated with high myopia has a DNA replication defect
PrimPol is a primase-polymerase found in humans, and other eukaryotes, involved in bypassing lesions encountered during DNA replication. PrimPol employs both translesion synthesis and repriming mechanisms to facilitate lesion bypass by the replisome. PrimPol has been reported to be a potential susceptibility gene associated with the development of myopia. Mutation of tyrosine 89 to aspartic acid (PrimPolY89D) has been identified in a number of cases of high myopia, implicating it in the aetiology of this disorder. Here, we examined whether this mutation resulted in any changes in the molecular and cellular activities associated with human PrimPol. We show that PrimPolY89D has a striking decrease in primase and polymerase activities. The hydrophobic ring of tyrosine is important for retaining wild-type extension activity. We also demonstrate that the decreased activity of PrimPolY89D is associated with reduced affinities for DNA and nucleotides, resulting in diminished catalytic efficiency. Although the structure and stability of PrimPolY89D is altered, its fidelity remains unchanged. This mutation also reduces cell viability after DNA damage and significantly slows replication fork rates in vivo. Together, these findings establish that the major DNA replication defect associated with this PrimPol mutant is likely to contribute to the onset of high myopia
Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes
Until relatively recently, DNA primases were viewed simply as a class of proteins that synthesize short RNA primers requisite for the initiation of DNA replication. However, recent studies have shown that this perception of the limited activities associated with these diverse enzymes can no longer be justified. Numerous examples can now be cited demonstrating how the term 'DNA primase' only describes a very narrow subset of these nucleotidyltransferases, with the vast majority fulfilling multifunctional roles from DNA replication to damage tolerance and repair. This article focuses on the archaeo-eukaryotic primase (AEP) superfamily, drawing on recently characterized examples from all domains of life to highlight the functionally diverse pathways in which these enzymes are employed. The broad origins, functionalities and enzymatic capabilities of AEPs emphasizes their previous functional misannotation and supports the necessity for a reclassification of these enzymes under a category called primase-polymerases within the wider functional grouping of polymerases. Importantly, the repositioning of AEPs in this way better recognizes their broader roles in DNA metabolism and encourages the discovery of additional functions for these enzymes, aside from those highlighted here
- …