1,928 research outputs found

    Thermal and albedo mapping of the north and south polar regions of Mars

    Get PDF
    The first maps of the thermal properties of the north and south polar region of Mars are presented. The maps complete the mapping of the entire planet. The maps for the north polar region were derived from Viking Infrared Thermal Mapper (IRTM) observations obtained from 10 Jun. to 30 Sep. 1978. This period corresponds to the early summer season in the north, when the north residual water ice cap was exposed, and the polar surface temperatures were near their maximum. The maps in the south were derived from observations obtained between 24 Aug. to 23 Sep. 1977. This period corresponds to the late summer season in the south, when the seasonal polar cap had retreated to close to its residual configuration, and the second global dust storm of 1977 had largely subsided. The major results concerning the following topics are summarized: (1) surface water ice; (2) polar dune material; and (3) dust deposits

    The Management and Security Expert (MASE)

    Get PDF
    The Management and Security Expert (MASE) is a distributed expert system that monitors the operating systems and applications of a network. It is capable of gleaning the information provided by the different operating systems in order to optimize hardware and software performance; recognize potential hardware and/or software failure, and either repair the problem before it becomes an emergency, or notify the systems manager of the problem; and monitor applications and known security holes for indications of an intruder or virus. MASE can eradicate much of the guess work of system management

    The LDEF ultra heavy cosmic ray experiment

    Get PDF
    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed

    Progress report on the ultra heavy cosmic ray experiment (AO178)

    Get PDF
    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed
    corecore