3 research outputs found

    Selective Survival and Maturation of Adult-Born Dentate Granule Cells Expressing the Immediate Early Gene Arc/Arg3.1

    Get PDF
    Progenitor cells in the adult dentate gyrus provide a constant supply of neuronal precursors, yet only a small fraction of these cells survive and develop into mature dentate granule cells (DGCs). A major challenge of current research is thus to understand the stringent selection process that governs the maturation and functional integration of adult-born DGCs. In mature DGCs, high-frequency stimulation (HFS) of the perforant path input elicits robust expression of the immediate early gene Arc/Arg3.1, trafficking of its mRNA to dendrites, and local synthesis of the protein necessary for consolidation of long-term potentiation (LTP). Given the synaptic commitment inherent in LTP consolidation, we considered that HFS-evoked expression of Arc could be used to timemap the functional integration of newborn DGCs. Dividing cells were birthmarked by BrdU-labeling at 1, 7, 14, 21, or 28 days prior to induction of LTP and expression of Arc was examined by confocal microscopy. Contrary to expectation, LTP did not induce Arc expression in newborn cells at any age, suggesting they might be refractory to synaptically-evoked Arc expression for at least one month. Importantly, however, spontaneous expression of Arc was detected in BrdU-labeled cells and strongly associated with the survival and maturation of NeuN-positive DGCs. Moreover, Arc expression at the earliest ages (1 and 7 days), clearly precedes the formation of glutamatergic synapses on new neurons. These results suggest an unexpected early role for Arc in adult-born DGCs, distinct from its functions in LTP, LTD, and homeostatic synaptic plasticity

    Aspiration risk factors, microbiology, and empiric antibiotics for patients hospitalized with community-acquired pneumonia

    No full text
    Background: Aspiration community-acquired pneumonia (ACAP) and community-acquired pneumonia (CAP) in patients with aspiration risk factors (AspRFs) are infections associated with anaerobes, but limited evidence suggests their pathogenic role. Research question: What are the aspiration risk factors, microbiology patterns, and empiric anti-anaerobic use in patients hospitalized with CAP? Study design and methods: This is a secondary analysis of GLIMP, an international, multicenter, point-prevalence study of adults hospitalized with CAP. Patients were stratified into three groups: (1) ACAP, (2) CAP/AspRF+ (CAP with AspRF), and (3) CAP/AspRF- (CAP without AspRF). Data on demographics, comorbidities, microbiological results, and anti-anaerobic antibiotics were analyzed in all groups. Patients were further stratified in severe and nonsevere CAP groups. Results: We enrolled 2,606 patients with CAP, of which 193 (7.4%) had ACAP. Risk factors independently associated with ACAP were male, bedridden, underweight, a nursing home resident, and having a history of stroke, dementia, mental illness, and enteral tube feeding. Among non-ACAP patients, 1,709 (70.8%) had CAP/AspRF+ and 704 (29.2%) had CAP/AspRF-. Microbiology patterns including anaerobes were similar between CAP/AspRF-, CAP/AspRF+ and ACAP (0.0% vs 1.03% vs 1.64%). Patients with severe ACAP had higher rates of total gram-negative bacteria (64.3% vs 44.3% vs 33.3%, P = .021) and lower rates of total gram-positive bacteria (7.1% vs 38.1% vs 50.0%, P 50% in all groups) independent of AspRFs or ACAP received specific or broad-spectrum anti-anaerobic coverage antibiotics. Interpretation: Hospitalized patients with ACAP or CAP/AspRF+ had similar anaerobic flora compared with patients without aspiration risk factors. Gram-negative bacteria were more prevalent in patients with severe ACAP. Despite having similar microbiological flora between groups, a large proportion of CAP patients received anti-anaerobic antibiotic coverage
    corecore