311 research outputs found

    Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation

    Get PDF
    Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells ‘on-demand’. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients

    Comparable Generation of Activin-Induced Definitive Endoderm via Additive Wnt or BMP Signaling in Absence of Serum

    Get PDF
    Summary There is considerable interest in differentiating human pluripotent stem cells (hPSCs) into definitive endoderm (DE) and pancreatic cells for in vitro disease modeling and cell replacement therapy. Numerous protocols use fetal bovine serum, which contains poorly defined factors to induce DE formation. Here, we compared Wnt and BMP in their ability to cooperate with Activin signaling to promote DE formation in a chemically defined medium. Varying concentrations of WNT3A, glycogen synthase kinase (GSK)-3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime (BIO), and BMP4 could independently co-operate with Activin to effectively induce DE formation even in the absence of serum. Overall, CHIR99021 is favored due to its cost effectiveness. Surprisingly, WNT3A was ineffective in suppressing E-CADHERIN/CDH1 and pluripotency factor gene expression unlike GSK-3 inhibitors or BMP4. Our findings indicate that both Wnt and BMP effectively synergize with Activin signaling to generate DE from hPSCs, although WNT3A requires additional factors to suppress the pluripotency program inherent in hPSCs

    Game of Stones:feasibility randomised controlled trial of how to engage men with obesity in text message and incentive interventions for weight loss

    Get PDF
    Objectives To examine the acceptability and feasibility of narrative text messages with or without financial incentives to support weight loss for men. Design Individually randomised three-arm feasibility trial with 12 months’ follow-up. Setting Two sites in Scotland with high levels of disadvantage according to Scottish Index for Multiple Deprivation (SIMD). Participants Men with obesity (n=105) recruited through community outreach and general practitioner registers. Interventions Participants randomised to: (A) narrative text messages plus financial incentive for 12 months (short message service (SMS)+I), (B) narrative text messages for 12 months (SMS only), or (C) waiting list control. Outcomes Acceptability and feasibility of recruitment, retention, intervention components and trial procedures assessed by analysing quantitative and qualitative data at 3, 6 and 12 months. Results 105 men were recruited, 60% from more disadvantaged areas (SIMD quintiles 1 or 2). Retention at 12 months was 74%. Fewer SMS+I participants (64%) completed 12-month assessments compared with SMS only (79%) and control (83%). Narrative texts were acceptable to many men, but some reported negative reactions. No evidence emerged that level of disadvantage was related to acceptability of narrative texts. Eleven SMS+I participants (31%) successfully met or partially met weight loss targets. The cost of the incentive per participant was £81.94 (95% CI £34.59 to £129.30). Incentives were acceptable, but improving health was reported as the key motivator for weight loss. All groups lost weight (SMS+I: −2.51 kg (SD=4.94); SMS only: −1.29 kg (SD=5.03); control: −0.86 kg (SD=5.64) at 12 months). Conclusions This three-arm weight management feasibility trial recruited and retained men from across the socioeconomic spectrum, with the majority from areas of disadvantage, was broadly acceptable to most participants and feasible to deliver

    Aerobic Methanotrophy and Co-occurrence Networks of a Tropical Rainforest and Oil Palm Plantations in Malaysia

    Get PDF
    Oil palm (OP) plantations are gradually replacing tropical rainforest in Malaysia, one of the largest palm oil producers globally. Conversion of lands to OP plantations has been associated with compositional shifts of the microbial community, with consequences on the greenhouse gas (GHG) emissions. While the impact of the change in land use has recently been investigated for microorganisms involved in N2O emission, the response of the aerobic methanotrophs to OP agriculture remains to be determined. Here, we monitored the bacterial community composition, focusing on the aerobic methanotrophs, in OP agricultural soils since 2012, 2006, and 1993, as well as in a tropical rainforest, in 2019 and 2020. High-affinity methane uptake was confirmed, showing significantly lower rates in the OP plantations than in the tropical rainforest, but values increased with continuous OP agriculture. The bacterial, including the methanotrophic community composition, was modified with ongoing OP agriculture. The methanotrophic community composition was predominantly composed of unclassified methanotrophs, with the canonical (Methylocystis) and putative methanotrophs thought to catalyze high-affinity methane oxidation present at higher relative abundance in the oldest OP plantation. Results suggest that the methanotrophic community was relatively more stable within each site, exhibiting less temporal variations than the total bacterial community. Uncharacteristically, a 16S rRNA gene-based co-occurrence network analysis revealed a more complex and connected community in the OP agricultural soil, which may influence the resilience of the bacterial community to disturbances. Overall, we provide a first insight into the ecology and role of the aerobic methanotrophs as a methane sink in OP agricultural soils

    HNF4A Haploinsufficiency in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced Pluripotent Stem Cells.

    Get PDF
    Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and β cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and β-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and β cell defects in patients

    HNF4A haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells

    Get PDF
    Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and β cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and β-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and β cell defects in patients.publishedVersio

    Co-pyrolysis of Chlorella vulgaris with plastic wastes: Thermal degradation, kinetics and Progressive Depth Swarm-Evolution (PDSE) neuro network-based optimization

    Get PDF
    The search of sustainable route for biofuel production from renewable biomass have garnered wide interest to seek for various routes without compromising the environment. Co-pyrolysis emerges as a promising thermochemical route that can improve the pyrolysis output from simultaneously processing more than two feedstocks in an inert atmosphere. This paper focuses on the kinetic modeling and neuro-evolution optimization in the application of catalytic co-pyrolysis of microalgae and plastic waste using HZSM-5 supported on limestone (HZSM-5/LS), in which co-pyrolysis of binary mixture of microalgae and plastic wastes (i.e. High-Density Polyethylene and Low-Density Polyethylene) was investigated over different heating rates. The results have shown a positive synergistic effect between the microalgae and polyethylene in which the apparent activation energies values have reduced significantly ( 20 kJ/mol) compared to that obtained by pyrolysis of individual microalgae component. The kinetic models reflect that the mixture of microalgae and Low-Density Polyethylene for use as co-pyrolysis feedstock requires activation energy that is 23% and 13% lower compared to that required by pure microalgae and the mixture of microalgae and High-Density Polyethylene, respectively. The Progressive Depth Swarm-Evolution (PDSE) was used for neural architecture search, which subsequently provided optimal reaction condition at 873 K can achieve 99.6 % of degradation rate using a tri-combination of LDPE (0.13 %) + HDPE (0.77 %) + MA (0.11 %) in the presence of HZSM-5/LS catalyst
    corecore