132 research outputs found

    Synthesis of 4-thio-5-(2′′-thienyl)uridine and cytotoxicity activity against colon cancer cells <i>in vitro</i>

    Get PDF
    A novel anti-tumor agent 4-thio-5-(2′′-thienyl)uridine (6) was synthesized and the in vitro cytotoxicity activity against mice colon cancer cells (MC-38) and human colon cancer cells (HT-29) was evaluated by MTT assay. The results showed that the novel compound had antiproliferative activity toward MC-38 and HT-29 cells in a dose-dependent manner. The cell cycle analysis by flow cytometry indicated that compound 6 exerted in tumor cell proliferation inhibition by arresting HT-29 cells in the G2/M phase. In addition, cell death detected by propidium iodide staining showed that compound 6 efficiently induced cell apoptosis in a concentration-dependent manner. Moreover, the sensitivity of human fibroblast cells to compound 6 was far lower than that of tumor cells, suggesting the specific anti-tumor effect of 4-thio-5-(2′′-thienyl)uridine. Taken together, novel compound 6 effectively inhibits colon cancer cell proliferation, and hence would have potential value in clinical application as an antitumor agent

    Newfoundland shrimp waste utilization and dispersant generation

    Get PDF
    This research focused on the utilization of Newfoundland shrimp waste as a premium and low-cost nitrogen source for microbial growth through an enzymatic hydrolysis process. In addition, the enzymatically hydrolyzed shrimp waste was used to generate a green dispersant for crude oil dispersion in seawater. During the enzymatic hydrolysis process, an integration of response surface methodology and artificial neural network was proposed for the first time for modeling and optimization of shrimp waste hydrolysis. The utilization of shrimp waste for microbial growth was also achieved. The hydrolysis process was further optimized using the dispersant effectiveness (DE) as the response to generate a green shrimp waste based dispersant. The functional properties of the hydrolyzed product were examined. The DE and acute toxicity of the generated dispersant were evaluated. A comparison of the generated dispersant with Corexit 9500 on dispersing three types of crude oil was conducted. This research provided a promising methodology of shrimp waste management and a potential option for oil spill response

    What Makes a Helpful Online Review When Information Overload Exists?

    Get PDF
    With the increasing of online reviews, information overload has become a major problem in online community. What makes a helpful online review when information overload exists? In this study, the research model is developed to examine the helpfulness of online consumer reviews when information overload exists. Information quality is measured by review length and pictures in the model. The result is showed the relationship between review length and review helpfulness is usually described as an inverted U curve. The impact of review length and picture review on helpfulness is stronger when information overload exists. The impact of is also stronger with negative reviews than without negative reviews. As a result, our findings help extend the literature on information diagnosticity within the context of information overload

    The Synthesis of (E)-4-Thio-5-(2-Bromovinyl)Uridine/Deoxyuridine and Its Characterization and Cytotoxicity

    Get PDF
    (E)-4-Thio-5-(2-brominevinyl)uridine/2'-deoxyuridine(8a/8b) were efficiently and in an environmental friendly way synthesized from uridine/2'-deoxyuridine (1a/1b) that were first transformed to (E)-(2-brominevinyl) uridine / 2'-deoxyuridine(5a/5b) via iodination, selective oxidation, Heck reaction steps. The resulting products (5a/5b) were then converted to the targets (8a/8b) through esterification, thio-reaction of carbonyl, hydrolysis steps. Two new compounds (8a/8b) and three new intermediates (7a 7b 10) were obtained, and their structures have been fully characterized by 1H NMR, 13C NMR, IR, UV, HR-MS, X-Ray. The study of 8a and their derivatives regarding cytotoxicity was carried out by using MTT experiment method, and the initial findings suggest (E)-4-Thio-5-(2-brominevinyl) uridine/ 2'-deoxyuridine (8a / 8b) would be potential antitumor drugs

    Surface-enhanced Raman Spectroscopy Facilitates the Detection of Microplastics &lt; 1 μm in the Environment

    Get PDF
    Micro- and nanoplastics are considered one of the top pollutants that threaten the environment, aquatic life and mammalian (including human) health. Unfortunately, the development of uncomplicated but reliable analytical methods that are sensitive to individual microplastic particles, with sizes smaller than 1 μm, remains incomplete. Here, we demonstrate the detection and identification of (single) micro- and nanoplastics, by using surface-enhanced Raman spectroscopy (SERS), with Klarite substrates. Klarite is an exceptional SERS substrate; it is shaped as a dense grid of inverted pyramidal cavities, made of gold. Numerical simulations demonstrate that these cavities (or pits) strongly focus incident light into intense hotspots. We show that Klarite has the potential to facilitate the detection and identification of synthesized and atmospheric/aquatic microplastic (single) particles, with sizes down to 360 nm. We find enhancement factors of up to two orders of magnitude for polystyrene analytes. In addition, we detect and identify microplastics with sizes down to 450 nm on Klarite, with samples extracted from ambient, airborne particles. Moreover, we demonstrate Raman mapping as a fast detection technique for sub-micron microplastic particles. The results show that SERS with Klarite is a facile technique that has the potential to detect and systematically measure nanoplastics in the environment. This research is an important step towards detecting nanoscale plastic particles that may cause toxic effects to mammalian and aquatic life when present in high concentrations

    Multiwalled carbon nanotubes co-delivering sorafenib and epidermal growth factor receptor siRNA enhanced tumor-suppressing effect on liver cancer.

    Get PDF
    OBJECTIVE: This study aimed to investigate the effects of multiwalled carbon nanotubes (MWNTs) co-delivering sorafenib (Sor) and epidermal growth factor receptor (EGFR) siRNA (MWNT/Sor/siRNA) on tumor growth in liver cancer (LC). RESULTS: MWNT/Sor/siRNA was proved to possess increased Sor release, high siRNA stability, and enhanced cellular uptake. In addition, MWNT treatment has few effects on cell proliferation and apoptosis in HepG2 cells; however, MWNT/Sor/siRNA treatment significantly inhibited clone number and induced cell apoptosis, which shows a more favorable antitumor effect than MWNT/Sor and free Sor and free siRNA in HepG2 cells. Moreover MWNT/Sor/siRNA treatment has the most significant antitumor effect CONCLUSIONS: MWNT/Sor/siRNA exhibited a superior antitumor effect METHODS: The MWNT/Sor and MWNT/Sor/siRNA were prepared, and then the morphologies of MWNT/Sor/siRNA were analyzed

    Two-Dimensional Platinum Telluride with Ordered Te Vacancy Superlattice for Efficient and Robust Hydrogen Evolution

    Full text link
    Defect engineering to activate the basal planes of transition metal dichalcogenides (TMDs) is critical for the development of TMD-based electrocatalysts as the chemical inertness of basal planes restrict their potential applications in hydrogen evolution reaction (HER). Here, we report the synthesis and evaluation of few-layer (7x7)-PtTe2-x with an ordered, well-defined and high-density Te vacancy superlattice. Compared with pristine PtTe2, (2x2)-PtTe2-x and Pt(111), (7x7)-PtTe2-x exhibits superior HER activities in both acidic and alkaline electrolytes due to its rich structures of undercoordinated Pt sites. Furthermore, the (7x7)-PtTe2-x sample features outstanding catalytic stability even compared to the state-of-the-art Pt/C catalyst. Theoretical calculations reveal that the interactions between various undercoordinated Pt sites due to proximity effect can provide superior undercoordinated Pt sites for hydrogen adsorption and water dissociation. This work will enrich the understanding of the relationship between defect structures and electrocatalytic activities and provide a promising route to develop efficient Pt-based TMD electrocatalysts

    Genome-wide identification of cystathionine beta synthase genes in wheat and its relationship with anther male sterility under heat stress

    Get PDF
    Cystathionine beta synthase (CBS) domains containing proteins (CDCPs) plays an important role in plant development through regulation of the thioredoxin system, as well as its ability to respond to biotic and abiotic stress conditions. Despite this, no systematic study has examined the wheat CBS gene family and its relation to high temperature-induced male sterility. In this study, 66 CBS family members were identified in the wheat genome, and their gene or protein sequences were used for subsequent analysis. The TaCBS gene family was found to be unevenly distributed on 21 chromosomes, and they were classified into four subgroups according to their gene structure and phylogeny. The results of collinearity analysis showed that there were 25 shared orthologous genes between wheat, rice and Brachypodium distachyon, and one shared orthologous gene between wheat, millet and barley. The cis-regulatory elements of the TaCBS were related to JA, IAA, MYB, etc. GO and KEGG pathway analysis identified these TaCBS genes to be associated with pollination, reproduction, and signaling and cellular processes, respectively. A heatmap of wheat plants based on transcriptome data showed that TaCBS genes were expressed to a higher extent in spikelets relative to other tissues. In addition, 29 putative tae-miRNAs were identified, targeting 41 TaCBS genes. Moreover, qRT-PCR validation of six TaCBS genes indicated their critical role in anther development, as five of them were expressed at lower levels in heat-stressed male sterile anthers than in Normal anthers. Together with anther phenotypes, paraffin sections, starch potassium iodide staining, and qRT-PCR data, we hypothesized that the TaCBS gene has a very important connection with the heat-stressed sterility process in wheat, and these data provide a basis for further insight into their relationship

    Distinct Topological Surface States on the Two Terminations of MnBi4_4Te7_7

    Full text link
    The recent discovered intrinsic magnetic topological insulator MnBi2Te4 have been met with unusual success in hosting emergent phenomena such as the quantum anomalous Hall effect and the axion insulator states. However, the surface-bulk correspondence of the Mn-Bi-Te family, composed by the superlattice-like MnBi2Te4/(Bi2Te3)n (n = 0, 1, 2, 3 ...) layered structure, remains intriguing but elusive. Here, by using scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) techniques, we unambiguously assign the two distinct surface states of MnBi4Te7 (n = 1) to the quintuple-layer (QL) Bi2Te3 termination and the septuple-layer (SL) MnBi2Te4 termination, respectively. A comparison of the experimental observations with theoretical calculations reveals the diverging topological behaviors, especially the hybridization effect between magnetic and nonmagnetic layers, on the two terminations: a gap on the QL termination originating from the topological surface states of the QL hybridizing with the bands of the beneath SL, and a gapless Dirac-cone band structure on the SL termination with time-reversal symmetry. The quasi-particle interference patterns further confirm the topological nature of the surface states for both terminations, continuing far above the Fermi energy. The QL termination carries a spin-helical Dirac state with hexagonal warping, while at the SL termination, a strongly canted helical state from the surface lies between a pair of Rashba-split states from its neighboring layer. Our work elucidates an unprecedented hybridization effect between the building blocks of the topological surface states, and also reveals the termination-dependent time-reversal symmetry breaking in a magnetic topological insulator, rendering an ideal platform to realize the half-integer quantum Hall effect and relevant quantum phenomena.Comment: 22 Pages, 4 Figure
    • …
    corecore