4 research outputs found

    End-to-end deep auto-encoder for segmenting a moving object with limited training data

    Get PDF
    Deep learning-based approaches have been widely used in various applications, including segmentation and classification. However, a large amount of data is required to train such techniques. Indeed, in the surveillance video domain, there are few accessible data due to acquisition and experiment complexity. In this paper, we propose an end-to-end deep auto-encoder system for object segmenting from surveillance videos. Our main purpose is to enhance the process of distinguishing the foreground object when only limited data are available. To this end, we propose two approaches based on transfer learning and multi-depth auto-encoders to avoid over-fitting by combining classical data augmentation and principal component analysis (PCA) techniques to improve the quality of training data. Our approach achieves good results outperforming other popular models, which used the same principle of training with limited data. In addition, a detailed explanation of these techniques and some recommendations are provided. Our methodology constitutes a useful strategy for increasing samples in the deep learning domain and can be applied to improve segmentation accuracy. We believe that our strategy has a considerable interest in various applications such as medical and biological fields, especially in the early stages of experiments where there are few samples

    Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia

    No full text
    International audienceCD146, an endothelial molecule involved in permeability and monocyte transmigration, has recently been reported to promote vessel growth. As CD146 is also detectable as a soluble form (sCD146), we hypothesized that sCD146 could stimulate angiogenesis. Experiments of Matrigel plugs in vivo showed that sCD146 displayed chemotactic activity on endogenous endothelial cells, and exogenously injected late endothelial progenitor cells (EPCs). Recruited endothelial cells participated in formation of vascular-like structures. In vitro, sCD146 enhanced angiogenic properties of EPCs, with an increased cell migration, proliferation, and capacity to establish capillary-like structures. Effects were additive with those of vascular endothelial growth factor (VEGF), and sCD146 enhanced VEGFR2 expression and VEGF secretion. Consistent with a proangiogenic role, gene expression profiling of sCD146-stimulated EPCs revealed an up-regulation of endothelial nitric oxide synthase, urokinase plasminogen activator, matrix metalloproteinase 2, and VEGFR2. Silencing membrane-bound CD146 inhibited responses. The potential therapeutic interest of sCD146 was tested in a model of hind limb ischemia. Local injections of sCD146 significantly reduced auto-amputation, tissue necrosis, fibrosis, inflammation, and increased blood flow. Together, these findings establish that sCD146 displays chemotactic and angiogenic properties and promotes efficient neovascularization in vivo. Recombinant human sCD146 might thus support novel strategies for therapeutic angiogenesis in ischemic diseases

    CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo

    No full text
    RATIONALE: CD146, a transmembrane immunoglobulin mainly expressed at the intercellular junction of endothelial cells, is involved in cell-cell cohesion, paracellular permeability, monocyte transmigration and angiogenesis. CD146 exists as 2 isoforms, short (sh) and long (lg), but which isoform is involved remains undefined. OBJECTIVE: The recently described role of CD146 in angiogenesis prompted us to investigate which isoform was involved in this process in human late endothelial progenitors (EPCs), with the objective of increasing their proangiogenic potential. METHODS AND RESULTS: Immunofluorescence experiments showed that, in subconfluent EPCs, shCD146 was localized in the nucleus and at the migrating edges of the membrane, whereas lgCD146 was intracellular. In confluent cells, shCD146 was redistributed at the apical membrane and lgCD146 was directed toward the junction. In contrast to lgCD146, shCD146 was overexpressed in EPCs as compared to mature endothelial cells and upregulated by vascular endothelial growth factor and SDF-1 (stromal cell-derived factor 1). Study of the properties of both isoforms in vitro provided evidence that shCD146 was involved in EPC adhesion to activated endothelium, migration, and proliferation, with a paracrine secretion of interleukin-8 or angiopoietin 2, whereas lgCD146 was implicated in stabilization of capillary-like structures in Matrigel and transendothelial permeability. In an animal model of hindlimb ischemia, transplantation of shCD146-modified EPCs selectively promoted both EPC engraftment and blood flow. CONCLUSIONS: Altogether, these findings establish that CD146 isoforms display distinct functions in vessels regeneration. Selective improvement of therapeutic angiogenesis by shCD146 overexpression suggests a potential interest of shCD146-transduced EPCs for the treatment of peripheral ischemic disease
    corecore