463 research outputs found

    Collision of millimetre droplets induces DNA and protein transfection into cells

    Get PDF
    Nonperturbing and simple transfection methods are important for modern techniques used in biotechnology. Recently, we reported that electrospraying can be applied to DNA transfection in cell lines, bacteria, and chicken embryos. However, the transfection efficiency was only about 2%. To improve the transfection rate, physical properties of the sprayed droplets were studied in different variations of the method. We describe a highly efficient technique (30–93%) for introduction of materials such as DNA and protein into living cells by electrospraying droplets of a high conductivity liquid onto cells incubated with the material for transfection. Electric conductivity has a sizable influence on the success of transfection. In contrast, molecular weight of the transfected material, types of ions in the electrospray solution, and the osmotic pressure do not influence transfection efficiency. The physical analysis revealed that collision of cells with millimetre-sized droplets activates intracellular uptake

    Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS)

    Get PDF
    The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs

    Protomers of Benzocaine: Solvent and Permittivity Dependence

    Get PDF
    The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid, which finds an application as a local anesthetic (LA), is found to adopt in its protonated form at least two populations of distinct structures in the gas phase and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization (ESI) process. Here we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry (IM-MS) to yield gas-phase IR spectra of simultaneously m/z and drift-time resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species - the N- and O-protonated form. Density functional theory (DFT) calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation has been suggested

    Simultaneous Quantitation of Amino Acid Mixtures using Clustering Agents

    Get PDF
    A method that uses the abundances of large clusters formed in electrospray ionization to determine the solution-phase molar fractions of amino acids in multi-component mixtures is demonstrated. For solutions containing either four or 10 amino acids, the relative abundances of protonated molecules differed from their solution-phase molar fractions by up to 30-fold and 100-fold, respectively. For the four-component mixtures, the molar fractions determined from the abundances of larger clusters consisting of 19 or more molecules were within 25% of the solution-phase molar fractions, indicating that the abundances and compositions of these clusters reflect the relative concentrations of these amino acids in solution, and that ionization and detection biases are significantly reduced. Lower accuracy was obtained for the 10-component mixtures where values determined from the cluster abundances were typically within a factor of three of their solution molar fractions. The lower accuracy of this method with the more complex mixtures may be due to specific clustering effects owing to the heterogeneity as a result of significantly different physical properties of the components, or it may be the result of lower S/N for the more heterogeneous clusters and not including the low-abundance more highly heterogeneous clusters in this analysis. Although not as accurate as using traditional standards, this clustering method may find applications when suitable standards are not readily available
    corecore