229 research outputs found
Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data
With typical periods of order 10 minutes, the pulsation signatures of ZZ Ceti
variables (pulsating hydrogen-atmosphere white dwarf stars) are severely
undersampled by long-cadence (29.42 minutes per exposure) K2 observations.
Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling
precision asteroseismology. We report the discovery of two new ZZ Cetis in
long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by 3-4 nights
of follow-up, high-speed (<=30 s) photometry from McDonald Observatory, we
recover accurate pulsation frequencies for K2 signals that reflected 4-5 times
off the Nyquist with the full precision of over 70 days of monitoring (~0.01
muHz). In turn, the K2 observations enable us to select the correct peaks from
the alias structure of the ground-based signals caused by gaps in the
observations. We identify at least seven independent pulsation modes in the
light curves of each of these stars. For EPIC 220274129, we detect three
complete sets of rotationally split ell=1 (dipole mode) triplets, which we use
to asteroseismically infer the stellar rotation period of 12.7+/-1.3 hr. We
also detect two sub-Nyquist K2 signals that are likely combination (difference)
frequencies. We attribute our inability to match some of the K2 signals to the
ground-based data to changes in pulsation amplitudes between epochs of
observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC
220274129 near the middle of the ZZ Ceti instability strip, with Teff =
11590+/-200 K and 11810+/-210 K, and masses 0.57+/-0.03 Msun and 0.62+/-0.03
Msun, respectively.Comment: 13 pages, 9 figures, 7 tables; accepted for publication in Ap
The search for ZZ Ceti stars in the original Kepler mission
We report the discovery of 42 white dwarfs in the original Kepler mission
field, including nine new confirmed pulsating hydrogen-atmosphere white dwarfs
(ZZ Ceti stars). Guided by the Kepler-INT Survey (KIS), we selected white dwarf
candidates on the basis of their U-g, g-r, and r-H_alpha photometric colours.
We followed up these candidates with high-signal-to-noise optical spectroscopy
from the 4.2-m William Herschel Telescope. Using ground-based, time-series
photometry, we put our sample of new spectroscopically characterized white
dwarfs in the context of the empirical ZZ Ceti instability strip. Prior to our
search, only two pulsating white dwarfs had been observed by Kepler.
Ultimately, four of our new ZZ Cetis were observed from space. These rich
datasets are helping initiate a rapid advancement in the asteroseismic
investigation of pulsating white dwarfs, which continues with the extended
Kepler mission, K2.Comment: 9 pages, 6 figures, accepted for publication in MNRA
Discovery of pulsations, including possible pressure modes, in two new extremely low mass, He-core white dwarfs
We report the discovery of the second and third pulsating extremely low mass
white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS
J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 Msun and
effective temperatures below 10,000 K, establishing these putatively He-core
WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti
stars). The short-period pulsations evidenced in the light curve of J1112 may
also represent the first observation of acoustic (p-mode) pulsations in any WD,
which provide an exciting opportunity to probe this WD in a complimentary way
compared to the long-period g-modes also present. J1112 is a Teff = 9590 +/-
140 K and log(g) = 6.36 +/- 0.06 WD. The star displays sinusoidal variability
at five distinct periodicities between 1792-2855 s. In this star we also see
short-period variability, strongest at 134.3 s, well short of expected g-modes
for such a low-mass WD. The other new pulsating WD, J1518, is a Teff = 9900 +/-
140 K and log(g) = 6.80 +/- 0.05 WD. The light curve of J1518 is highly
non-sinusoidal, with at least seven significant periods between 1335-3848 s.
Consistent with the expectation that ELM WDs must be formed in binaries, these
two new pulsating He-core WDs, in addition to the prototype SDSS
J184037.78+642312.3, have close companions. However, the observed variability
is inconsistent with tidally induced pulsations and is so far best explained by
the same hydrogen partial-ionization driving mechanism at work in classic
C/O-core ZZ Ceti stars.Comment: 9 pages, 5 figures, accepted to The Astrophysical Journa
Evidence from K2 for rapid rotation in the descendant of an intermediate-mass star
Using patterns in the oscillation frequencies of a white dwarf observed by
K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated
pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy
from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is
a 13,590(340) K, 0.87(03) solar-mass white dwarf. This is the highest mass
measured for any pulsating white dwarf with known rotation, suggesting a
possible link between high mass and fast rotation. If it is the product of
single-star evolution, its progenitor was a roughly 4.0 solar-mass
main-sequence B star; we know very little about the angular momentum evolution
of such intermediate-mass stars. We explore the possibility that this rapidly
rotating white dwarf is the byproduct of a binary merger, which we conclude is
unlikely given the pulsation periods observed.Comment: 5 pages, 4 figure, 1 table; accepted for publication in The
Astrophysical Journal Letter
White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Linewidths: Kepler Observations of 27 Pulsating DA White Dwarfs Through K2 Campaign 8
We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere
white dwarfs (DAVs, a.k.a. ZZ Ceti stars) observed by the Kepler space
telescope up to K2 Campaign 8, an extensive compilation of observations with
unprecedented duration (>75 days) and duty cycle (>90%). The space-based
photometry reveals pulsation properties previously inaccessible to ground-based
observations. We observe a sharp dichotomy in oscillation mode linewidths at
roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s
have substantially broader mode linewidths, more reminiscent of a damped
harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also
permits extensive mode identification: We identify the spherical degree of 61
out of 154 unique radial orders, providing direct constraints of the rotation
period for 20 of these 27 DAVs, more than doubling the number of white dwarfs
with rotation periods determined via asteroseismology. We also obtain
spectroscopy from 4m-class telescopes for all DAVs with Kepler photometry.
Using these homogeneously analyzed spectra we estimate the overall mass of all
27 DAVs, which allows us to measure white dwarf rotation as a function of mass,
constraining the endpoints of angular momentum in low- and intermediate-mass
stars. We find that 0.51-to-0.73-solar-mass white dwarfs, which evolved from
1.7-to-3.0-solar-mass ZAMS progenitors, have a mean rotation period of 35 hr
with a standard deviation of 28 hr, with notable exceptions for higher-mass
white dwarfs. Finally, we announce an online repository for our Kepler data and
follow-up spectroscopy, which we collect at http://www.k2wd.org.Comment: 33 pages, 31 figures, 5 tables; accepted for publication in ApJS. All
raw and reduced data are collected at http://www.k2wd.or
Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries
We carry out high-speed photometry on 20 of the shortest-period, detached
white dwarf binaries known and discover systems with eclipses, ellipsoidal
variations (due to tidal deformations of the visible white dwarf), and Doppler
beaming. All of the binaries contain low-mass white dwarfs with orbital periods
less than 4 hr. Our observations identify the first eight tidally distorted
white dwarfs, four of which are reported for the first time here, which we use
to put empirical constraints on the mass-radius relationship for extremely
low-mass (<0.30 Msun) white dwarfs. We also detect Doppler beaming in several
of these binaries, which confirms the high-amplitude radial-velocity
variability. All of these systems are strong sources of gravitational
radiation, and long-term monitoring of those that display ellipsoidal
variations can be used to detect spin-up of the tidal bulge due to orbital
decay.Comment: 14 pages, 5 figures, accepted for publication in The Astrophysical
Journa
On the structure of large N cancellations in baryon chiral perturbation theory
We show how to compute loop graphs in heavy baryon chiral perturbation theory
including the full functional dependence on the ratio of the Delta--nucleon
mass difference to the pion mass, while at the same time automatically
incorporating the 1/N cancellations that follow from the large-N spin-flavor
symmetry of baryons in QCD. The one-loop renormalization of the baryon axial
vector current is studied to demonstrate the procedure. A new cancellation is
identified in the one-loop contribution to the baryon axial vector current. We
show that loop corrections to the axial vector currents are exceptionally
sensitive to deviations of the ratios of baryon-pion axial couplings from SU(6)
values
A second case of outbursts in a pulsating white dwarf observed by Kepler
We present observations of a new phenomenon in pulsating white dwarf stars: large-amplitude outbursts at timescales much longer than the pulsation periods. The cool ( = 11,060 K), hydrogen-atmosphere pulsating white dwarf PG 1149+057 was observed nearly continuously for more than 78.8 day by the extended Kepler mission in K2 Campaign 1. The target showed 10 outburst events, recurring roughly every 8 day and lasting roughly 15 hr, with maximum flux excursions up to 45% in the Kepler bandpass. We demonstrate that the outbursts affect the pulsations and therefore must come from the white dwarf. Additionally, we argue that these events are not magnetic reconnection flares, and are most likely connected to the stellar pulsations and the relatively deep surface convection zone. PG 1149+057 is now the second cool pulsating white dwarf to show this outburst phenomenon, after the first variable white dwarf observed in the Kepler mission, KIC 4552982. Both stars have the same effective temperature, within the uncertainties, and are among the coolest known pulsating white dwarfs of typical mass. These outbursts provide fresh observational insight into the red edge of the DAV instability strip and the eventual cessation of pulsations in cool white dwarfs
Outbursts in two new cool pulsating DA white dwarfs
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with = 10,780 ± 140 K and = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with = 11,190 ± 170 K and = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts
The pion photoproduction in the \Delta(1232) region
We investigate the pion photoproduction in the \Delta(1232) region in the
framework of an effective Lagrangian including pions, nulceon and \Delta(1232).
We work to third order in a small scale expansion with both and
treated as light scales. We note that in the region,
straightward power counting breaks as the amplitudes become very large, to deal
with this problem, we suggest that the appropriate way to compare theoretical
calculations with experimental data is via weighted integrals of the amplitudes
through the region.Comment: 34 pages and 5 figures,new counterterms arr adde
- …