82 research outputs found

    Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    Get PDF
    Background: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control. Methods: Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1) performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4-6 × 30-s cycle sprints per session). Aerobic performance (250-kJ self-paced cycling time trial), and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT) were determined before and after training. Results: Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P < 0.001). Fasting plasma insulin and glucose concentrations remained unchanged, but there was a tendency for reduced fasting plasma NEFA concentrations post-training (pre: 350 ± 36 v post: 290 ± 39 μmol·l-1, P = 0.058). Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P < 0.01), while aerobic cycling performance improved by ∼6% (P < 0.01). Conclusion: The efficacy of a high intensity exercise protocol, involving only ∼250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes

    Integrated Ecosystem Assessment: Lake Ontario Water Management

    Get PDF
    BACKGROUND: Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. METHODOLOGY AND FINDINGS: Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. SIGNIFICANCE: The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide decision-making on a set of management options

    Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Get PDF
    Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p \u3c 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody. Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation

    Dairy products and total calcium intake at 13 years of age and its association with obesity at 21 years of age

    Get PDF
    Background/objectives: Dairy products and specifically calcium have been suggested to play a role in obesity development but more longitudinal evidence is still needed. The objective of this study was to assess the association between dairy products and total calcium intake at age 13 and body mass index at age 21. Subjects/methods: This longitudinal study included 2159 individuals from the Epidemiological Health Investigation of Teenagers cohort (EPITeen), Porto, Portugal, evaluated at ages 13 and 21. Assessment consisted of anthropometrics measurements and structured questionnaires namely a semi-quantitative food frequency questionnaire to appraise food consumption in the past 12 months. Linear regression models were run in 941 individuals with complete information of confounders: gender, follow-up period, parents’ education, physical activity, energy, and total calcium intake. Results: Negative association was found on total calcium intake at age 13 with BMI at age 21 (model 0: β = −0.059 (95% CI: −0.113, −0.004) and model 1: −0.057 (95% CI: −0.113, −0.002)), however, no statistically significant association was found when adjusting for energy intake (model 2: β = −0.031 (95% CI: −0.110, 0.047). There were no associations between milk, yogurt, and cheese consumption at age 13 and BMI at age 21 when adjusting for confounders. Conclusions: This study did not support an independent effect of dairy products or total calcium intake in adolescence on later early adulthood adiposity.This study was funded by FEDER through the Operational Programme Competitiveness and Internationalization and national funding from the Foundation for Science and Technology—FCT (Portuguese Ministry of Science, Technology and Higher Education) (POCI-01-0145-FEDER-016829), under the project MetHyOS (Ref. FCT PTDC/DTP-EPI/6506/2014) and the Unidade de Investigação em Epidemiologia—Instituto de Saúde Pública da Universidade do Porto (EPIUnit) (POCI-01-0145-FEDER-006862; Ref. UID/DTP/04750/2013). Also this study was developed with the support of the research teams of the Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine of Porto University; the EPIUnit—Public Health Institute of Porto University; and the EPITeen Cohort Study

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)

    A Hypothesis-Testing Framework for Studies Investigating Ontogenetic Niche Shifts Using Stable Isotope Ratios

    Get PDF
    Ontogenetic niche shifts occur across diverse taxonomic groups, and can have critical implications for population dynamics, community structure, and ecosystem function. In this study, we provide a hypothesis-testing framework combining univariate and multivariate analyses to examine ontogenetic niche shifts using stable isotope ratios. This framework is based on three distinct ontogenetic niche shift scenarios, i.e., (1) no niche shift, (2) niche expansion/reduction, and (3) discrete niche shift between size classes. We developed criteria for identifying each scenario, as based on three important resource use characteristics, i.e., niche width, niche position, and niche overlap. We provide an empirical example for each ontogenetic niche shift scenario, illustrating differences in resource use characteristics among different organisms. The present framework provides a foundation for future studies on ontogenetic niche shifts, and also can be applied to examine resource variability among other population sub-groupings (e.g., by sex or phenotype)
    corecore