781 research outputs found

    Comet 81p/Wild 2: The Updated Stardust Coma Dust Fluence Measurement for Smaller (Sub 10-Micrometre) Particles

    Get PDF
    Micrometre and smaller scale dust within cometary comae can be observed by telescopic remote sensing spectroscopy [1] and the particle size and abundance can be measured by in situ spacecraft impact detectors [2]. Initial interpretation of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft [3] appears to show that very fine dust contributes not only a small fraction of the solid mass, but is also relatively sparse [4], with a low negative power function describing grain size distribution, contrasting with an apparent abundance indicated by the on-board Dust Flux Monitor Instrument (DFMI) [5] operational during the encounter. For particles above 10 m diameter there is good correspondence between results from the DFMI and the particle size inferred from experimental calibration [6] of measured aerogel track and aluminium foil crater dimensions (as seen in Figure 4 of [4]). However, divergence between data-sets becomes apparent at smaller sizes, especially submicrometre, where the returned sample data are based upon location and measurement of tiny craters found by electron microscopy of Al foils. Here effects of detection efficiency tail-off at each search magnification can be seen in the down-scale flattening of each scale component, but are reliably compensated by sensible extrapolation between segments. There is also no evidence of malfunction in the operation of DFMI during passage through the coma (S. Green, personal comm.), so can the two data sets be reconciled

    An immunohistochemical assessment of cellular proliferation markers in head and neck squamous cell cancers.

    Get PDF
    Prognostic information is essential for the evaluation, judgement and optimal treatment of patients with squamous cell cancers (SCCs) of the upper aerodigestive tract. Using immunohistochemical and flow cytometric techniques, we have studied the significance of cellular expression of the Ki-67 antigen, epidermal growth factor receptor (EGFR), the transferrin receptor (TFR) and DNA ploidy status in a prospective analysis of patients with SCCs of the head and neck region. All 42 fresh tumour samples (five well differentiated; 28 moderately differentiated; nine poorly differentiated) expressed both EGFR and TFR to varying degrees. Receptor expression was most marked on the peripheral invading margin of cancer cell islands although staining was also demonstrated in a random fashion within cellular islands and consistently along the basal cell layer of overlying stratified squamous epithelium. The percentage of cancer cells that reacted with the Ki-67 monoclonal antibody was assessed as low (less than 10%) in 15 samples (35.8%), intermediate (10-30%) in 19 samples (45.2%) and high (greater than 30%) in eight samples (19.0%). Eleven of 15 samples (73%) with a low percentage reactivity were DNA diploid, whereas seven of eight samples (87.5%) with a high percentage reactivity were DNA aneuploid. Poorly differentiated SCCs were significantly more often aneuploid than were either moderately or well differentiated tumours. Our results suggest that EGFR and TFR are widely distributed on SCCs, especially on proliferating cells at the invading tumour margin. In addition, there is a close spatial correlation between cells expressing EGFR, TFR and those expressing the Ki-67 antigen. Tumours in which the staining intensity for both EGFR and TFR was intense invariably expressed the Ki-67 antigen in a high proportion of cells. Further patient follow-up will be important in determining whether intense EGFR and TFR staining, combined with a high percentage reactivity with Ki-67 antibody and DNA aneuploidy, will ultimately define a subset of head and neck cancer patients with a poor clinical outcome

    Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    Get PDF
    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector

    Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    Get PDF
    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity
    • тАж
    corecore