202 research outputs found
Advances in Smart Materials and Applications
This is one of a series of special issues published in Advances
in Materials Science and Engineering, focusing on the latest
advances of smart materials and their applications.
Evolution of engineering materials is strongly depending
on the growing transformation of complexity in engineering
products. New materials being designed are required to provide
specific properties and demonstrate certain functional
characteristics by manipulating their dimension, chemistry,
and structure through various advanced technologies.Therefore,
“smartness” of a material has become the topic of interest.
Properties of smart materials may change accordingly to
the applied external stimuli.
Under the direction of the editorial team, we showcase
advances of organic and inorganic based smart materials
and their applications in areas of specific interest such as
energy, environment, and health. A total of 9 articles are
published in this special issue. Six articles are focused on
production, synthesis, and optimization of smart materials;
and the remaining are dedicated to application of smart
materials
Growth and Characterisation of Low-k dielectric Spin on Glass [QC585. A963 2002 f rb] [Microfiche 7021]
Dimensi didalam peranti mickro VLSI semakin berkurangan dengan satu objektif, iaitu untuk meningkatkan laju pengendalian.
Device dimension in VLSI circuit constantly shrink with one main objective, i.e. increase in speed
Studying the creep behaviour of strechable capacitive sensor with barium titanate silicone elastomer composite
In this paper, the creep behaviour of stretchable interdigital capacitive (IDC) large strain sensors is studied. A generalized Kelvin-Voigt (GKV) model is used to study the creep behaviour of the sensor's substrate material, manufactured from silicone elastomer (Ecoflex 00−30) with barium titanate (BTO) filler. Creep experiments are performed on sensors with 10, 20, 30 and 40 wt% BTO nanoparticles with dimensions of 100 nm and 200 nm dispersed in the elastomer. The BTO was used to increase the overall permittivity of the substrate, hence raising the capacitance of the IDC sensor. The effect of BTO on the GKV model parameters was studied in detail through analysis of the creep response. The pristine Ecoflex silicone elastomer is predominately a hyperelastic material, which shows negligible creep, while the addition of BTO particles led to the composite exhibiting creep such that the composite behaves like a visco-hyperelastic material. Hence, this behaviour results in the creep affecting the electrical sensing performance of the capacitive strain sensors during static loading conditions. This information provides insights on the impact of composite composition on creep-resistance and output signal of the sensor (capacitance).</p
The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate-silicone elastomer composites
The stress relaxation behavior of barium titanate (BTO)-elastomer (Ecoflex) composites, as used in large strain sensors, is studied using the generalized Maxwell-Wiechert model. In this article, we examine the stress relaxation behavior of ceramic polymer composites by conducting stress relaxation tests on samples prepared with varying the particle loading by 0, 10, 20, 30, and 40 wt% of 100 and 200 nm BTO ceramic particles embedded in a Ecoflex silicone-based hyperelastic elastomer. The influence of BTO on the Maxwell-Wiechert model parameters was studied through the stress relaxation results. While a pristine Ecoflex silicone elastomer is predominantly a hyperelastic material, the addition of BTO made the composite behave as a visco-hyperelastic material. However, this behavior was shown to have a negligible effect on the electrical sensing performance of the large strain sensor.</p
Studying the creep behaviour of strechable capacitive sensor with barium titanate silicone elastomer composite
In this paper, the creep behaviour of stretchable interdigital capacitive (IDC) large strain sensors is studied. A generalized Kelvin-Voigt (GKV) model is used to study the creep behaviour of the sensor's substrate material, manufactured from silicone elastomer (Ecoflex 00−30) with barium titanate (BTO) filler. Creep experiments are performed on sensors with 10, 20, 30 and 40 wt% BTO nanoparticles with dimensions of 100 nm and 200 nm dispersed in the elastomer. The BTO was used to increase the overall permittivity of the substrate, hence raising the capacitance of the IDC sensor. The effect of BTO on the GKV model parameters was studied in detail through analysis of the creep response. The pristine Ecoflex silicone elastomer is predominately a hyperelastic material, which shows negligible creep, while the addition of BTO particles led to the composite exhibiting creep such that the composite behaves like a visco-hyperelastic material. Hence, this behaviour results in the creep affecting the electrical sensing performance of the capacitive strain sensors during static loading conditions. This information provides insights on the impact of composite composition on creep-resistance and output signal of the sensor (capacitance).</p
Capacitive stretch sensors for knee motion and muscle activity tracking for gait analysis
Gait analysis is crucial for understanding human movement and has significant health monitoring and rehabilitation implications. However, current methods for analyzing walking gait often lack accuracy and comfort. While flexible sensors are typically used to measure knee angles, they do not adequately monitor muscle activity in the calf and thigh, which is essential for a comprehensive gait analysis. To address this, we developed capacitive stretch sensors using a parallel plate capacitance model, combining Ecoflex with Carbon Black as the conductive material and Ecoflex as the flexible, stretchable substrate. Three of these sensors were attached to a knee brace, resulting in a lightweight, comfortable, and user-friendly measurement system. This integration significantly reduces sensor hysteresis errors. The knee brace converts knee bending angle and muscle activity into electrical signals, allowing for detailed analysis. This enables the recognition of different walking gaits by distinguishing between knee-bending angles and muscle activities. The use of an integrated knee brace with flexible stretch sensors offers precise gait measurements and valuable data for applications in human health monitoring, rehabilitation training, sports monitoring, and human-computer interaction, presenting broad prospects for future use
Recommended from our members
A pilot dose-response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cognition, mood and blood pressure in older adults
Purpose
Haskap (Lonicera caerulea L. or blue honeysuckle) is a plant native to the low-lying wet areas and mountains of Siberia and northeastern Asia, but is now cultivated in Canada. The dark blue berries are rich in anthocyanins, particularly cyanidin-3-O-glucoside. Previously, anthocyanin-rich fruits have been observed to benefit cognitive performance during the immediate postprandial period following a single acute dose. However, no study has currently examined the potential for haskap berries to influence cognitive performance. Here, we investigate the acute cognitive benefits of an anthocyanin-rich haskap berry extract.
Methods
A double-blind, counterbalanced, crossover intervention study compared the acute effects of three separate haskap berry extract doses, containing 100mg, 200mg, and 400mg anthocyanins, with a sugar-matched placebo. Participants were an opportunity sample of 20 older adults, aged 62-81 years. Measures of cognition, mood, and blood pressure were recorded at baseline and 1.5 hours postprandially.
Results
Compared to placebo, the 400mg dose elicited significantly lower diastolic blood pressure and heart rate. Both 200mg and 400mg doses elicited significantly higher word recall, with the 400mg dose also significantly improving word recognition scores, on an episodic memory task. However, mood, working memory and executive function task results were more equivocal.
Conclusions
The findings provide evidence for improvements in episodic memory and blood pressure following acute supplementation with haskap berry extract, with higher doses appearing most effective. The cognitive findings concur with previous literature that suggests episodic memory effects, and not executive function effects, are most prevalent in older adults following anthocyanin-rich berry supplementation. The blood pressure outcome is consistent with a vasodilatory mechanism of action
Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device
Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite
Polymers are commonly found to have low mechanical properties, e.g., low stiffness and low strength. To improve the mechanical properties of polymers, various types of fillers have been added. These fillers can be either micro- or nano-sized; however; nano-sized fillers are found to be more efficient in improving the mechanical properties than micro-sized fillers. In this research, we have analysed the mechanical behaviour of silica reinforced nanocomposites printed by using a new 5-axis photopolymer extrusion 3D printing technique. The printer has 3 translational axes and 2 rotational axes, which enables it to print free-standing objects. Since this is a new technique and in order to characterise the mechanical properties of the nanocomposites manufactured using this new technique, we carried out experimental and numerical analyses. We added a nano-sized silica filler to enhance the properties of a 3D printed photopolymer. Different concentrations of the filler were added and their effects on mechanical properties were studied by conducting uniaxial tensile tests. We observed an improvement in mechanical properties following the addition of the nano-sized filler. In order to observe the tensile strength, dog-bone samples using a new photopolymer extrusion printing technique were prepared. A viscoelastic model was developed and stress relaxation tests were conducted on the photopolymer in order to calibrate the viscoelastic parameters. The developed computational model of nano reinforced polymer composite takes into account the nanostructure and the dispersion of the nanoparticles. Hyper and viscoelastic phenomena was considered to validate and analyse the stress–strain relationship in the cases of filler concentrations of 8%, 9%, and 10%. In order to represent the nanostructure, a 3D representative volume element (RVE) was utilized and subsequent simulations were run in the commercial finite element package ABAQUS. The results acquired in this study could lead to a better understanding of the mechanical characteristics of the nanoparticle reinforced composite, manufactured using a new photopolymer extrusion 5-axis 3D printing technique
Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette) transporters gene enrichment in typhoid fever-infected Nigerian children
- …
