202 research outputs found

    Advances in Smart Materials and Applications

    Get PDF
    This is one of a series of special issues published in Advances in Materials Science and Engineering, focusing on the latest advances of smart materials and their applications. Evolution of engineering materials is strongly depending on the growing transformation of complexity in engineering products. New materials being designed are required to provide specific properties and demonstrate certain functional characteristics by manipulating their dimension, chemistry, and structure through various advanced technologies.Therefore, “smartness” of a material has become the topic of interest. Properties of smart materials may change accordingly to the applied external stimuli. Under the direction of the editorial team, we showcase advances of organic and inorganic based smart materials and their applications in areas of specific interest such as energy, environment, and health. A total of 9 articles are published in this special issue. Six articles are focused on production, synthesis, and optimization of smart materials; and the remaining are dedicated to application of smart materials

    Growth and Characterisation of Low-k dielectric Spin on Glass [QC585. A963 2002 f rb] [Microfiche 7021]

    Get PDF
    Dimensi didalam peranti mickro VLSI semakin berkurangan dengan satu objektif, iaitu untuk meningkatkan laju pengendalian. Device dimension in VLSI circuit constantly shrink with one main objective, i.e. increase in speed

    Studying the creep behaviour of strechable capacitive sensor with barium titanate silicone elastomer composite

    Get PDF
    In this paper, the creep behaviour of stretchable interdigital capacitive (IDC) large strain sensors is studied. A generalized Kelvin-Voigt (GKV) model is used to study the creep behaviour of the sensor's substrate material, manufactured from silicone elastomer (Ecoflex 00−30) with barium titanate (BTO) filler. Creep experiments are performed on sensors with 10, 20, 30 and 40 wt% BTO nanoparticles with dimensions of 100 nm and 200 nm dispersed in the elastomer. The BTO was used to increase the overall permittivity of the substrate, hence raising the capacitance of the IDC sensor. The effect of BTO on the GKV model parameters was studied in detail through analysis of the creep response. The pristine Ecoflex silicone elastomer is predominately a hyperelastic material, which shows negligible creep, while the addition of BTO particles led to the composite exhibiting creep such that the composite behaves like a visco-hyperelastic material. Hence, this behaviour results in the creep affecting the electrical sensing performance of the capacitive strain sensors during static loading conditions. This information provides insights on the impact of composite composition on creep-resistance and output signal of the sensor (capacitance).</p

    The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate-silicone elastomer composites

    Get PDF
    The stress relaxation behavior of barium titanate (BTO)-elastomer (Ecoflex) composites, as used in large strain sensors, is studied using the generalized Maxwell-Wiechert model. In this article, we examine the stress relaxation behavior of ceramic polymer composites by conducting stress relaxation tests on samples prepared with varying the particle loading by 0, 10, 20, 30, and 40 wt% of 100 and 200 nm BTO ceramic particles embedded in a Ecoflex silicone-based hyperelastic elastomer. The influence of BTO on the Maxwell-Wiechert model parameters was studied through the stress relaxation results. While a pristine Ecoflex silicone elastomer is predominantly a hyperelastic material, the addition of BTO made the composite behave as a visco-hyperelastic material. However, this behavior was shown to have a negligible effect on the electrical sensing performance of the large strain sensor.</p

    Studying the creep behaviour of strechable capacitive sensor with barium titanate silicone elastomer composite

    Get PDF
    In this paper, the creep behaviour of stretchable interdigital capacitive (IDC) large strain sensors is studied. A generalized Kelvin-Voigt (GKV) model is used to study the creep behaviour of the sensor's substrate material, manufactured from silicone elastomer (Ecoflex 00−30) with barium titanate (BTO) filler. Creep experiments are performed on sensors with 10, 20, 30 and 40 wt% BTO nanoparticles with dimensions of 100 nm and 200 nm dispersed in the elastomer. The BTO was used to increase the overall permittivity of the substrate, hence raising the capacitance of the IDC sensor. The effect of BTO on the GKV model parameters was studied in detail through analysis of the creep response. The pristine Ecoflex silicone elastomer is predominately a hyperelastic material, which shows negligible creep, while the addition of BTO particles led to the composite exhibiting creep such that the composite behaves like a visco-hyperelastic material. Hence, this behaviour results in the creep affecting the electrical sensing performance of the capacitive strain sensors during static loading conditions. This information provides insights on the impact of composite composition on creep-resistance and output signal of the sensor (capacitance).</p

    Capacitive stretch sensors for knee motion and muscle activity tracking for gait analysis

    Full text link
    Gait analysis is crucial for understanding human movement and has significant health monitoring and rehabilitation implications. However, current methods for analyzing walking gait often lack accuracy and comfort. While flexible sensors are typically used to measure knee angles, they do not adequately monitor muscle activity in the calf and thigh, which is essential for a comprehensive gait analysis. To address this, we developed capacitive stretch sensors using a parallel plate capacitance model, combining Ecoflex with Carbon Black as the conductive material and Ecoflex as the flexible, stretchable substrate. Three of these sensors were attached to a knee brace, resulting in a lightweight, comfortable, and user-friendly measurement system. This integration significantly reduces sensor hysteresis errors. The knee brace converts knee bending angle and muscle activity into electrical signals, allowing for detailed analysis. This enables the recognition of different walking gaits by distinguishing between knee-bending angles and muscle activities. The use of an integrated knee brace with flexible stretch sensors offers precise gait measurements and valuable data for applications in human health monitoring, rehabilitation training, sports monitoring, and human-computer interaction, presenting broad prospects for future use

    Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite

    Get PDF
    Polymers are commonly found to have low mechanical properties, e.g., low stiffness and low strength. To improve the mechanical properties of polymers, various types of fillers have been added. These fillers can be either micro- or nano-sized; however; nano-sized fillers are found to be more efficient in improving the mechanical properties than micro-sized fillers. In this research, we have analysed the mechanical behaviour of silica reinforced nanocomposites printed by using a new 5-axis photopolymer extrusion 3D printing technique. The printer has 3 translational axes and 2 rotational axes, which enables it to print free-standing objects. Since this is a new technique and in order to characterise the mechanical properties of the nanocomposites manufactured using this new technique, we carried out experimental and numerical analyses. We added a nano-sized silica filler to enhance the properties of a 3D printed photopolymer. Different concentrations of the filler were added and their effects on mechanical properties were studied by conducting uniaxial tensile tests. We observed an improvement in mechanical properties following the addition of the nano-sized filler. In order to observe the tensile strength, dog-bone samples using a new photopolymer extrusion printing technique were prepared. A viscoelastic model was developed and stress relaxation tests were conducted on the photopolymer in order to calibrate the viscoelastic parameters. The developed computational model of nano reinforced polymer composite takes into account the nanostructure and the dispersion of the nanoparticles. Hyper and viscoelastic phenomena was considered to validate and analyse the stress–strain relationship in the cases of filler concentrations of 8%, 9%, and 10%. In order to represent the nanostructure, a 3D representative volume element (RVE) was utilized and subsequent simulations were run in the commercial finite element package ABAQUS. The results acquired in this study could lead to a better understanding of the mechanical characteristics of the nanoparticle reinforced composite, manufactured using a new photopolymer extrusion 5-axis 3D printing technique
    corecore