7 research outputs found

    Development of a single-board computer high-resolution microendoscope (PiHRME) to increase access to cervical cancer screening in underserved areas

    Get PDF
    Over 85% of cervical cancer deaths occur in developing countries.1 Even though the early detection and treatment of cervical precancerous lesions has been shown to prevent invasive cervical cancer, limited resources make it difficult to implement standard cervical cancer screening methods, such as the Pap Smear, in low-resource areas. Instead, many developing countries rely on the visual inspection of the cervix with acetic acid (VIA) to help identify precancerous and cancerous lesions. While VIA has a high sensitivity (82.14%), it has a poor specificity (50.00%), resulting in the overtreatment of women and misallocation of limited resources.2 Recent studies have shown that combining VIA with high-resolution microendoscope (HRME) imaging increases the specificity of cervical cancer screening.3-4 The HRME is a low-cost imaging system (~$2,100) that allows the user to image epithelial tissue in vivo at sub-cellular resolutions at the point-of-care. The current HRME imaging system is also accompanied with automatic image analysis software to distinguish normal and low-grade lesions from high-grade precancerous and cancerous lesions of the cervix. Please click Additional Files below to see the full abstract

    Optical Molecular Imaging in the Gastrointestinal Tract

    Get PDF
    Recent developments in optical molecular imaging allow for real-time identification of morphological and biochemical changes in tissue associated with gastrointestinal neoplasia. This review summarizes widefield and high resolution imaging modalities currently in pre-clinical and clinical evaluation for the detection of colorectal cancer and esophageal cancer. Widefield techniques discussed include high definition white light endoscopy, narrow band imaging, autofluoresence imaging, and chromoendoscopy; high resolution techniques discussed include probe-based confocal laser endomicroscopy, high-resolution microendoscopy, and optical coherence tomography. Finally, new approaches to enhance image contrast using vital dyes and molecular-specific targeted contrast agents are evaluated
    corecore