50,896 research outputs found
Information-Theoretic Attacks in the Smart Grid
Gaussian random attacks that jointly minimize the amount of information
obtained by the operator from the grid and the probability of attack detection
are presented. The construction of the attack is posed as an optimization
problem with a utility function that captures two effects: firstly, minimizing
the mutual information between the measurements and the state variables;
secondly, minimizing the probability of attack detection via the
Kullback-Leibler divergence between the distribution of the measurements with
an attack and the distribution of the measurements without an attack.
Additionally, a lower bound on the utility function achieved by the attacks
constructed with imperfect knowledge of the second order statistics of the
state variables is obtained. The performance of the attack construction using
the sample covariance matrix of the state variables is numerically evaluated.
The above results are tested in the IEEE 30-Bus test system.Comment: 2017 IEEE International Conference on Smart Grid Communications
(SmartGridComm
Modelling of the Terahertz Communication Channel for In-vivo Nano-networks in the Presence of Noise
This paper focuses on the modelling of communication channel noise inside human tissues at the THz band (0.1-10THz). A novel model is put forward based on the study of the physical mechanism of the channel noise in the medium, which takes into account both the radiation of the medium and the molecular absorption from the transmitted signal. The derivation and the general concepts of the noise modelling is detailed in the paper. The results show that the channel noise power spectral density at the scale of several micrometres is at acceptable levels and the value tends to decrease with the increase of both distance and frequency. In addition, the channel noise is also related to the composition of the human tissues, with the result of higher channel noise in tissues with higher water concentration. The conclusion drawn from the conducted study and analysis paves the way for more comprehensive characterisation of the electromagnetic channel within in-vivo nano-networks
Possible and Molecular states in a chiral quark model
We perform a systematic study of the bound state problem of and
systems by using effective interaction in our chiral quark model.
Our results show that both the interactions of and states
are attractive, which consequently result in
and bound states.Comment: arXiv admin note: substantial text overlap with arXiv:1204.395
Contact Atomic Structure and Electron Transport Through Molecules
Using benzene sandwiched between two Au leads as a model system, we
investigate from first principles the change in molecular conductance caused by
different atomic structures around the metal-molecule contact. Our motivation
is the variable situations that may arise in break junction experiments; our
approach is a combined density functional theory and Green function technique.
We focus on effects caused by (1) the presence of an additional Au atom at the
contact and (2) possible changes in the molecule-lead separation. The effects
of contact atomic relaxation and two different lead orientations are fully
considered. We find that the presence of an additional Au atom at each of the
two contacts will increase the equilibrium conductance by up to two orders of
magnitude regardless of either the lead orientation or different group-VI
anchoring atoms. This is due to a LUMO-like resonance peak near the Fermi
energy. In the non-equilibrium properties, the resonance peak manifests itself
in a large negative differential conductance. We find that the dependence of
the equilibrium conductance on the molecule-lead separation can be quite
subtle: either very weak or very strong depending on the separation regime.Comment: 8 pages, 6 figure
Detection of water vapor in the terrestrial planet forming region of a transition disk
We report a detection of water vapor in the protoplanetary disk around DoAr
44 with the Texas Echelon Cross Echelle Spectrograph --- a visitor instrument
on the Gemini north telescope. The DoAr 44 disk consists of an optically thick
inner ring and outer disk, separated by a dust-cleared 36 AU gap, and has
therefore been termed "pre-transitional". To date, this is the only disk with a
large inner gap known to harbor detectable quantities of warm (T=450 K) water
vapor. In this work, we detect and spectrally resolve three mid-infrared pure
rotational emission lines of water vapor from this source, and use the shapes
of the emission lines to constrain the location of the water vapor. We find
that the emission originates near 0.3 AU --- the inner disk region. This
characteristic region coincides with that inferred for both optically thick and
thin thermal infrared dust emission, as well as rovibrational CO emission. The
presence of water in the dust-depleted region implies substantial columns of
hydrogen (>10^{22} cm-2) as the water vapor would otherwise be destroyed by
photodissociation. Combined with the dust modeling, this column implies a
gas/small-dust ratio in the optically thin dusty region of >1000. These results
demonstrate that DoAr 44 has maintained similar physical and chemical
conditions to classical protoplanetary disks in its terrestrial-planet forming
regions, in spite of having formed a large gap.Comment: Paper accepted to the Astrophysical Journal Letter
Strain accommodation through facet matching in LaSrCuO/NdCeCuO ramp-edge junctions
Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM) are used to
investigate the crystal structure of ramp-edge junctions between
superconducting electron-doped NdCeCuO
and superconducting hole-doped LaSrCuO
thin films, the latter being the top layer. On the ramp, a new growth mode of
LaSrCuO with a 3.3 degree tilt of the
c-axis is found. We explain the tilt by developing a strain accommodation model
that relies on facet matching, dictated by the ramp angle, indicating that a
coherent domain boundary is formed at the interface. The possible implications
of this growth mode for the creation of artificial domains in morphotropic
materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures.
Copyright (2015) American Institute of Physics. This article may be
downloaded for personal use only. Any other use requires prior permission of
the author and the American Institute of Physics. The following article
appeared in APL Mat. 3, 086101 (2015) and may be found at
http://dx.doi.org/10.1063/1.492779
Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe
The transformation of natural landscapes in Middle Europe began in the Neolithic as a result of the introduction of food-producing economies. This paper examines the relation between land-cover and demographic change in a regionally restricted case study. The study area is the Western Lake Constance area which has very detailed palynological as well as archaeological records. We compare land-cover change derived from nine pollen records using a pseudo-biomisation approach with 14C date probability density functions from archaeological sites which serve as a demographic proxy. We chose the Lake Constance area as a regional example where the pollen signal integrates a larger spatial pattern. The land-cover reconstructions for this region show first notable impacts at the Middle to Young Neolithic transition. The beginning of the Bronze Age is characterised by increases of arable land and pasture/meadow, whereas the deciduous woodland decreases dramatically. Changes in the land-cover classes show a correlation with the 14C density curve: the correlation is best with secondary woodland in the Young Neolithic which reflects the lake shore settlement dynamics. In the Early Bronze Age, the radiocarbon density correlates with open land-cover classes, such as pasture, meadow and arable land, reflecting a change in the land-use strategy. The close overall correspondence between the two archives implies that population dynamics and land-cover change were intrinsically linked. We therefore see human impact as a key driver for vegetation change in the Neolithic. Climate might have an influence on vegetation development, but the changes caused by human land use are clearly detectable from Neolithic times, at least in these densely settled, mid-altitude landscapes
The private capacity of quantum channels is not additive
Recently there has been considerable activity on the subject of additivity of
various quantum channel capacities. Here, we construct a family of channels
with sharply bounded classical, hence private capacity. On the other hand,
their quantum capacity when combined with a zero private (and zero quantum)
capacity erasure channel, becomes larger than the previous classical capacity.
As a consequence, we can conclude for the first time that the classical
private capacity is non-additive. In fact, in our construction even the quantum
capacity of the tensor product of two channels can be greater than the sum of
their individual classical private capacities.
We show that this violation occurs quite generically: every channel can be
embedded into our construction, and a violation occurs whenever the given
channel has larger entanglement assisted quantum capacity than (unassisted)
classical capacity.Comment: 4+4 pages, 2 eps figures. V2 has title and abstract changed; its new
structure reflects the final version of a main paper plus appendices
containing mathematical detail
Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group
We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled
- …