36 research outputs found

    Fatty acid-binding protein 5 (FABP5)-related signal transduction pathway in castration-resistant prostate cancer cells: a potential therapeutic target

    Get PDF
    In this short communication, a novel fatty acid-binding protein 5 (FABP5)-related signal transduction pathway in prostate cancer is reviewed. In castration-resistant prostate cancer (CRPC) cells, the FABP5-related signal transduction pathway plays an important role during transformation of the cancer cells from androgen-dependent state to androgen-independent state. The detailed route of this signal transduction pathway can be described as follows: when FABP5 expression is increased as the increasing malignancy, excessive amounts of fatty acids from intra- and extra-cellular sources are transported into the nucleus of the cancer cells where they act as signalling molecules to stimulate their nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). The phosphorylated or biologically activated PPARγ then modulates the expression of its downstream target regulatory genes to trigger a series of molecular events that eventually lead to enhanced tumour expansion and aggressiveness caused by an overgrowth of the cancer cells with a reduced apoptosis and an increased angiogenesis. Suppressing the FABP5-related pathway via RNA interference against FABP5 has produced a 63-fold reduction in the average size of the tumours developed from CRPC cells in nude mice, a seven-fold reduction of tumour incidence, and a 100% reduction of metastasis rate. Experimental treatments of CRPC with novel FABP5 inhibitors have successfully inhibited the malignant progression of CRPC cells both in vitro and in nude mouse. These studies suggest that FABP5-related signal transduction pathway is a novel target for therapeutic intervention of CRPC cells

    Molecular mechanisms on how FABP5 inhibitors promote apoptosis-induction sensitivity of prostate cancer cells.

    Get PDF
    Previous work showed that FABP5 inhibitors suppressed the malignant progression of prostate cancer cells, and this suppression might be achieved partially by promoting apoptosis. But the mechanisms involved were not known. Here, we investigated the effect of inhibitors on apoptosis and studied the relevant mechanisms. WtrFABP5 significantly reduced apoptotic cells in 22Rv1 and PC3 by 18% and 42%, respectively. In contrast, the chemical inhibitor SB-FI-26 produced significant increases in percentages of apoptotic cells in 22Rv1 and PC3 by 18.8% (±4.1) and 4.6% (±1.1), respectively. The bio- inhibitor dmrFABP5 also did so by 23.1% (±2.4) and 15.8% (±3.0), respectively, in these cell lines. Both FABP5 inhibitors significantly reduced the levels of the phosphorylated nuclear fatty acid receptor PPARγ, indicating that these inhibitors promoted apoptosis-induction sensitivity of the cancer cells by suppressing the biological activity of PPARγ. Thus, the phosphorylated PPARγ levels were reduced by FABP5 inhibitors, the levels of the phosphorylated AKT and activated nuclear factor kapper B (NFκB) were coordinately altered by additions of the inhibitors. These changes eventually led to the increased levels of cleaved caspase-9 and cleaved caspase-3; and thus, increase in the percentage of cells undergoing apoptosis. In untreated prostate cancer cells, increased FABP5 suppressed the apoptosis by increasing the biological activity of PPARγ, which, in turn, led to a reduced apoptosis by interfering with the AKT or NFκB signaling pathway. Our results suggested that the FABP5 inhibitors enhanced the apoptosis-induction of prostate cancer cells by reversing the biological effect of FABP5 and its related pathway

    Inhibition of tumourigenicity of small cell lung cancer cells by suppressing Id3 expression.

    Get PDF
    Id3 is over-expressed in small cell lung cancer (SCLC). To test whether the tumourigenicity of SCLC cells can be inhibited by suppressing Id3 expression, we transfected siRNA into SCLC cell line GLC-19 and established two sublines (G-Id3-1 and G-Id3-7) which expressed only 30% of the level of Id3 measured in control transfectants. Suppression of Id3 expression in both G-Id3-1 and G-Id3-7 cells produced significant reductions in proliferation rates and in numbers of colonies formed in soft agar assay. When G-Id3-1, G-Id3-7 and the control transfectants were inoculated subcutaneously into 3 groups (8 each) of nude mice, respectively, all (100%) inoculated animals produced tumours. Although there was no difference in tumour incidents amongst the 3 groups, significant reductions were observed in both size and weight of tumours produced by either G-Id3-1 or G-Id3-7 cells. While the final average volume of tumours produced in control group was 1012.1+/-394 mm(3), it was significantly reduced (p2.4-fold higher than that in control. The results in this study suggest that highly expressed Id3 in SCLC cells may be an important therapeutic target for tumour suppression

    siRNA Knockdown of Ribosomal Protein Gene RPL19 Abrogates the Aggressive Phenotype of Human Prostate Cancer

    Get PDF
    We provide novel functional data that posttranscriptional silencing of gene RPL19 using RNAi not only abrogates the malignant phenotype of PC-3M prostate cancer cells but is selective with respect to transcription and translation of other genes. Reducing RPL19 transcription modulates a subset of genes, evidenced by gene expression array analysis and Western blotting, but does not compromise cell proliferation or apoptosis in-vitro. However, growth of xenografted tumors containing the knocked-down RPL19 in-vivo is significantly reduced. Analysis of the modulated genes reveals induction of the non-malignant phenotype principally to involve perturbation of networks of transcription factors and cellular adhesion genes. The data provide evidence that extra-ribosomal regulatory functions of RPL19, beyond protein synthesis, are critical regulators of cellular phenotype. Targeting key members of affected networks identified by gene expression analysis raises the possibility of therapeutically stabilizing a benign phenotype generated by modulating the expression of an individual gene and thereafter constraining a malignant phenotype while leaving non-malignant tissues unaffected
    corecore