2,825 research outputs found

    General formula for the four-quark condensate and vacuum factorization assumption

    Full text link
    By differentiating the dressed quark propagator with respect to a variable background field, the linear response of the dressed quark propagator in the presence of the background field can be obtained. From this general method, using the vector background field as an illustration, we derive a general formula for the four-quark condensate <0~∣:qˉ(0)γμq(0)qˉ(0)γμq(0):∣0~><{\tilde 0}|:{\bar q}(0)\gamma_\mu q(0){\bar q}(0)\gamma_\mu q(0):|{\tilde 0}>. This formula contains the corresponding fully dressed vector vertex and it is shown that factorization for <0~∣:qˉ(0)γμq(0)qˉ(0)γμq(0):∣0~><{\tilde 0}|:{\bar q}(0)\gamma_\mu q(0){\bar q}(0)\gamma_\mu q(0):| {\tilde 0}> holds only when the dressed vertex is taken to be the bare one. This property also holds for all other type of four-quark condensate.Comment: Revtex4, 11 pages, no figure

    Rainbow tensor model with two tensors of rank three

    Full text link
    We give the keystone operators and construct a graded ring with tree and loop operators. In terms of the keystones operators, connected tree and loop operators in the ring, we construct the rainbow tensor model with two tensors of rank-3 and present its WW-representation. Moreover we derive the compact expressions of correlators from the WW-representation and analyze the free energy in large NN limit. In addition, we establish the correspondence between two colored Dyck walks in the Fredkin spin chain and tree operators in the ring. Based on the classification Dyck walks, we give the number of tree operators with the given level. Furthermore, for the entanglement entropy of the Fredkin spin chain, we show the entanglement scaling beyond logarithmic scaling in the ordinary critical systems from the viewpoint of tensor model.Comment: 27 pages, 15 figures, 1 tabl

    Structure-Exploiting Delay-Dependent Stability Analysis Applied to Power System Load Frequency Control

    Get PDF
    Linear matrix inequality (LMI) based delay-dependent stability analysis/synthesis methods have been applied to power system load frequency control (LFC) which has communication networks in its loops. However, the computational burden of solving large-scale LMIs poses a great challenge to the application of those methods to real-world power systems. This paper investigates the computational aspect of delay-dependent stability analysis (DDSA) of LFC. The basic idea is to improve the numerical tractability of DDSA by exploiting the chordal sparsity and symmetry of the graph related to LFC loops. The graph-theoretic analysis yields the structure restrictions of weighting matrices needed for the LMIs to inherit the chordal sparsity of the control loops. By enforcing those structure restrictions on weighting matrices, the positive semidefinite constraints in the LMIs can be decomposed into smaller ones, and the number of decision variables can be greatly reduced. Symmetry in LFC control loops is also exploited to reduce the number of decision variables. Numerical studies show the proposed structure-exploiting techniques significantly improves the numerical tractability of DDSA at the cost of the introduction of acceptable minor conservatism

    Bilateral liability-based contracts in information security outsourcing

    Get PDF

    Deep learning assisted jet tomography for the study of Mach cones in QGP

    Full text link
    Mach cones are expected to form in the expanding quark-gluon plasma (QGP) when energetic quarks and gluons (called jets) traverse the hot medium at a velocity faster than the speed of sound in high-energy heavy-ion collisions. The shape of the Mach cone and the associated diffusion wake are sensitive to the initial jet production location and the jet propagation direction relative to the radial flow because of the distortion by the collective expansion of the QGP and large density gradient. The shape of jet-induced Mach cones and their distortions in heavy-ion collisions provide a unique and direct probe of the dynamical evolution and the equation of state of QGP. However, it is difficult to identify the Mach cone and the diffusion wake in current experimental measurements of final hadron distributions because they are averaged over all possible initial jet production locations and propagation directions. To overcome this difficulty, we develop a deep learning assisted jet tomography which uses the full information of the final hadrons from jets to localize the initial jet production positions. This method can help to constrain the initial regions of jet production in heavy-ion collisions and enable a differential study of Mach-cones with different jet path length and orientation relative to the radial flow of the QGP in heavy-ion collisions
    • …
    corecore