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Abstract—Linear matrix inequality (LMI) based delay-
dependent stability analysis/synthesis methods have been applied
to power system load frequency control (LFC) which has com-
munication networks in its loops. However, the computational
burden of solving large-scale LMIs poses a great challenge to the
application of those methods to real-world power systems. This
paper investigates the computational aspect of delay-dependent
stability analysis (DDSA) of LFC. The basic idea is to improve
the numerical tractability of DDSA by exploiting the chordal
sparsity and symmetry of the graph related to LFC loops.
The graph-theoretic analysis yields the structure restrictions of
weighting matrices needed for the LMIs to inherit the chordal
sparsity of the control loops. By enforcing those structure
restrictions on weighting matrices, the positive semi-definite
constraints in the LMIs can be decomposed into smaller ones,
and the number of decision variables can be greatly reduced.
Symmetry in LFC control loops is also exploited to reduce
the number of decision variables. Numerical studies show the
proposed structure-exploiting techniques significantly improves
the numerical tractability of DDSA at the cost of the introduction
of acceptable minor conservatism.

Index Terms—Delay-dependent stability, load frequency con-
trol, chordal sparsity, symmetry, linear matrix inequality.

I. INTRODUCTION

The existence and adverse effects of time delays in power
system control loops have been well-recognised by recent
publications with the ever-increasing integration of communi-
cation networks into the closed-loop control & operation of the
currently developing smart grids. Time delays can degrade the
dynamic performance and stability of load frequency control
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(LFC) [1]–[5]. To analyze and further alleviate the effects of
time delays, many researchers have focused their attention on
delay margin calculation and time-delay robust control.

Delay margins are the maximal admissible time delays with
which the system remains stable [2], [4]. The knowledge
of the delay margins can be used to evaluate the stability
level and guide the controller design of time-delay power
systems. Two groups of methods, including frequency-domain
and time-domain methods, have been proposed to calculate the
delay margins. Frequency-domain methods obtain the delay
margins by computing all critical roots of system characteristic
equations [6], [7]. This group of methods are also successfully
applied to time-delay power systems [5], [8]–[12]. Although
frequency-domain methods can obtain exact delay margins,
they are limited to constant delays which rarely occur in prac-
tice. Time-domain methods establish sufficient conditions for
the stability of time-delay systems by constructing Lyapunov-
Krasovskii functionals (LKF) whose parameters can be de-
termined by solving linear matrix inequalities (LMI) [13].
This group of methods are applied to LFC with constant and
time-varying delays [2], [4]. LMI-based time domain methods
can even be extended to analyze the stability of nonlinearly
perturbed LFC with time delays [14]. Although time-domain
methods possess some conservatism when calculating the de-
lay margins, they can be conveniently applied to systems with
single or multiple, constant or time-varying delays. Moreover,
the development of the modern interior point method (IPM)
provides off-the-shelf tools to solve LMIs.

The ultimate goal of DDSA is to inform the controller
design to mitigate the adverse effects of time delays. From
this aspect, time-domain LMI based methods have advantages
over frequency domain methods due to the fact that LMI
based criteria can be conveniently employed to derive the
delay-independent and delay-dependent bounded real lemmas
(BRL) [13] which then can be used to design H∞ robust
controllers. For instance, delay-independent BRLs are used in
[1] and [15] to design state-feedback and PI robust controllers
for LFC, respectively. In [3], PID-type robust controllers are
designed for LFC systems based on a delay-dependent BRL.
The delay-dependent BRL in [16] is extended to consider
LFC parameter uncertainties. To reduce conservatism, some
probabilistic information of time delays are taken into account
in the delay-dependent BRL for robust LFC design in [17].
Above-mentioned controllers are all designed to minimize the
H∞ index while guarantee stability for any delays less than
the preset upper bounds (the upper bounds are ∞ for delay-
independent methods).
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However, there is still a long way to go before all those
analysis/synthesis methods for time-delay systems can be
applied to real-world power systems. The major obstacle for
time-domain LMI based methods is the computational burden
of solving large-scale LMIs. Due to the limited ability of the
state-of-art LMI solvers, LMI based methods are only applied
to power systems with less than 3 generation units in each
control area [2]–[4] or using order-reduced system models
[18], [19]. As we know, there could be hundreds of generation
units in a practical power system and the analysis based on
order-reduced system models may not obtain reliable results.
Therefore, this paper focuses on the computational aspect and
aims at improving the numerical tractability of LMI based
DDSA. All previous works in this field directly apply certain
methods to LFC without considering the specific structure of
power system control loops. Nevertheless, problems appear in
the power systems are not generic ones but rather present some
structures. Thus, if those structures are properly exploited,
more efficient and feasible computational methods can be
obtained.

The contribution of this paper is exploiting the structures,
including chordal sparsity and symmetry, of LFC loops to
significantly improve the numerical tractability of DDSA. The
idea of exploiting chordal sparsity in Lyapunov LMI has
already been discussed in [20]. We further extend this idea
to DDSA by proving some more general results concerning
the structure restrictions of weighting matrices needed for the
LMIs in DDSA to inherit the chordal sparsity of LFC loops.
Chordal sparsity in the LMIs then allows the decomposition of
the original positive semi-definite (PSD) condition into much
smaller ones. Moreover, the symmetry of LFC control loops
is exploited to reduce the number of decision variables. By
exploiting chordal sparsity and symmetry, the number of deci-
sion variables and size of PSD conditions are greatly reduced.
Numerical results show the proposed structure-exploiting tech-
niques significantly improves the numerical tractability of
DDSA applied to large-scale LFC problems at the price of
introducing minor and acceptable conservatism.

The rest of this paper is organized as follows. Section II
describes the structure of time-delay LFC systems and the
delay-dependent stability criterion. In section III, we present
the chordal-structure matrix decomposition (CSMD) and give
several lemmas which enable the application of CSMD to
DDSA. Section IV introduces the sparsity and symmetry
exploiting techniques in DDSA of LFC. Step-by-step imple-
mentation guideline is also given in this section. Section V
reports numerical studies. Possible extensions of the proposed
method is discussed in section VI. Finally, section VII draws
conclusions and gives suggestions on future research.

II. TIME-DELAY LOAD FREQUENCY CONTROL AND
DELAY-DEPENDENT STABILITY ANALYSIS

A. Load Frequency Control Loops

As the main function of automatic generation control (AGC)
system, LFC aims at maintaining frequency and power inter-
changes between neighboring control areas at scheduled values
[15]. Both the single-area and multi-area control schemes are

shown in Fig. 1. The modeling of LFC system is mainly
based on two simplifications [15], [21]: 1) LFC focuses on the
collective performance of all generators rather than the inter-
machine oscillations, therefore all generators in one control
area are aggregated into one generator with inertia Mi equal
to the sum of the inertia of all generators and the damping
effect of all loads is represented by a single damping constant
Di; 2) due to the first simplification and the slow dynamics of
prime-mover power change and system frequency response,
the dynamics of electrical angle voltages are all neglected.
As a result, the LFC model consists of governor, turbine and
rotor/load, and a PI controller is implemented in practice to
guarantee system stability and desirable dynamic performance.
The time delays, including communication delays, sample-
induced delays and fault-induced delays, are combined as one
delay in the control loop represented by the block e−sτi . The
formulation of the state-space model can be found in appendix
A. The control loops are naturally associated with a graph
representing the connection relationship among state variables,
shown in Fig. 2. In this paper, we will exploit the structure
characteristics of this graph, including chordal sparsity and
symmetry, to improve the numerical tractability of DDSA of
LFC.

B. Delay-dependent Stability Criterion

The major objectives of DDSA are to 1) calculate the
system delay margins; 2) guide the controller design using
the delay margins as an additional performance index. One
of the mainstream methods of DDSA is based on Lyapunov-
Krasovskii functionals (LKF) [13] whose existence implies the
stability of time-delay systems. By specifying the structure of
LKFs, sufficient conditions for stability of time-delay systems
can be written as LMIs. This paper will explain the structure-
exploiting techniques based on the stability criterion derived
from the results in [22].

Consider the linear system with a time-varying delay:{
ẋ(t) = Ax(t) +Adx(t− d(t)), t > 0
x(t) = φ(t), t ∈ [−τ, 0]

(1)

where x(t) ∈ Rn is the state vector; A and Ad are system
matrices with appropriate dimensions; the time-varying delay
d(t) is a continuous function satisfying 0 ≤ d(t) ≤ τ
and |ḋ(t)| ≤ µ; the initial condition φ(t) is a continuously
differentiable function on [−τ, 0]. By selecting the candidate
LKF as

v(t) = xT (t)Px(t) +

∫ t

t−d(t)

xT (s)Q1x(s)ds+∫ t

t−τ
xT (s)Q2x(s)ds+ τ

∫ 0

−τ

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ,

(2)
the following theorem certifies the stability of system (1):

Theorem 1: System (1) is asymptotically stable if there exist
symmetric positive-definite matrices P � 0, Q1 � 0, Q2 �
0, R � 0 and a appropriately dimensioned matrix S such that

Ψ =

[
R S
S> R

]
< 0 (3)
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Fig. 1: Single-area (without dotted lines) and Multi-area (with dotted lines) LFC control structure.

Fig. 2: Connections of state variables of single-area (without
dotted lines) and multi-area (with dotted lines) LFC.

Φ =


Φ11 Φ12 S τA>R
Φ>12 Φ22 −S +R τA>dR
S> −S> +R −R−Q2 0
τRA τRAd 0 −R

 ≺ 0 (4)

where Φ11 = PA+A>P +Q1 +Q2 −R, Φ12 = PAd +
R− S and Φ22 = −(1− µ)Q1 − 2R+ S> + S.

Since the state-of-art LMI solvers have very limited ability
to solve large-scale LMIs, Theorem 1 poses a great compu-
tational challenge to the application of DDSA to real-world
systems. In the following sections, we describe the structure-
exploiting techniques based on Theorem 1, but the proposed
techniques are not restricted to Theorem 1 and can also be
applied to other LMI based delay-dependent stability criteria.

III. CHORDAL-STRUCTURED MATRIX DECOMPOSITION

This section provides theory foundation for subsequent dis-
cussions. Some concepts and properties related to the chordal
graph are reviewed at first. Then the theorem of chordal-
structured matrix decomposition is described. Finally, several
useful lemmas are presented and proved. The proofs can be
skipped for pure application purpose.

A. Theoretical Background

Let Mn denote the set of n × n matrices, and the sym-
metric subset of Mn is Sn. Every A ∈ Mn is naturally
associated with an undirected graph G(V,E) where the vertex
set V = {1, 2, · · · , n} and the edge set E = {(i, j) ∈
V × V : i 6= j, |[A]ij | + |[A]ji| 6= 0} where [A]ij denotes
the (i, j)th element of A. If (i, j) ∈ E, vertex i and j
are said to be adjacent. The set of all vertices adjacent to
vertex i is denoted by adjG(i). A graph is called complete if
every pair of its vertices are adjacent. For any vertex subset
V ′ ⊆ V , the subgraph induced by V ′ is a graph G′(V ′, E′)
with E′ = E∩(V ′×V ′). A clique is a subset of vertices of an
undirected graph such that its induced subgraph is complete,
and a clique is maximal if it is not a proper subset of another
clique. Let [n1, n2, · · · , nk] be a path of length k from vertex
n1 to vertex nk, i.e. (ni, ni+1) ∈ E for 1 ≤ i ≤ k − 1.
Specially, a cycle is a path with n1 = nk. A graph is connected
if there are paths containing each pair of vertices. A tree is
an undirected connected graph with no cycles. In addition,
a chord of a cycle is any edge joining two nonconsecutive
vertices of the cycle.

The concept of chordal graph is central in this paper:
Definition 1 ( [23]): An undirected graph is chordal if every

cycle of length greater than three has a chord.
Other than the definition given above, the chordal graph can be
characterized in several different ways [23]. The characteriza-
tion of clique trees is of concern in this paper. Let G(V,E) be
any graph. The set of all maximal cliques of G is denoted by
C = {C1, C2, · · · , Cp}. Consider a tree T (C, E) with vertices
from C and edges from E ⊆ C × C. We call T (C, E) a clique
tree if it satisfies the clique-intersection property (CIP), i.e.
for each pair of distinct maximal cliques Ci, Cj ∈ C, the set
Ci ∩ Cj is contained in every maximal clique on the path
connecting Ci and Cj in the tree. In fact, the existence of a
clique graph is equivalent to chordality:

Lemma 1 ( [23]): A connected undirected graph G is
chordal if and only if there exists a clique tree T (C, E).
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On the other hand, given a graph G(V,E), the set of
matrices associated with this graph is denoted by Mn(E) =
{A ∈ Mn : [A]ij = 0 if i 6= j & (i, j) /∈ E}. The symmetric
subset of Mn(E) is denoted by Sn(E) = Mn(E)∩Sn. Further
denote SCn = {X ∈ Sn : [X]ij = 0 if (i, j) /∈ C × C} for
every C ⊆ V . Let Eij denote the appropriately dimensioned
matrix with the (i, j)th element 1 and others 0.

Now we are ready to state the theorem of chordal-structured
matrix decomposition as follows:

Theorem 2 ( [24]): Given a chordal graph G(V, F ) with its
maximal cliques C = {C1, C2, · · · , Cp}. T (C, E) is a clique
tree. Define J(C) = {(i, j) ∈ C×C : i ≤ j} for every C ⊆ V
and

Λ = {(g, h, k, l) : (g, h) ∈ J(Ck ∩ Cl), (Ck, Cl) ∈ E}. (5)

Any A ∈ Sn(F ) can be decomposed into Ãk ∈ SCk
n (k =

1, 2, · · · , p) such that A =
∑p
k=1 Ã

k. Then A < 0 if and
only if the system of LMIs

Ãk − L̃k(z) < 0 (k = 1, 2, · · · , p) (6)

is feasible. Here z = (zghkl : (g, h, k, l) ∈ Λ) denotes a vetor
variable consisting of zghkl((g, h, k, l) ∈ Λ), and

L̃k(z) = −
∑

(i,j,h):(i,j,h,k)∈Λ

Eijzijhk+
∑

(i,j,l):(i,j,k,l)∈Λ

Eijzijkl

(7)
for every z = (zghkl : (g, h, k, l) ∈ Λ).
Note that the PSD condition on Ãk − L̃k(z) is equivalent to
the PSD condition on the submatrix indexed by Ck. Therefore,
Theorem 2 transforms the PSD condition on a single n × n
matrix into the PSD condition on multiple smaller matrices.
When the sizes of the maximal cliques are much smaller than
the size of A, this transformation will bring significant com-
putational advantages. For an arbitrary symmetric matrix A,
the corresponding graph G(V,E) is not necessarily chordal. In
this case, we can always find a chordal extension of G(V,E),
i.e. a chordal graph G(V, F ) with F ⊇ E, by adding some
edges. Clearly, A ∈ Sn(F ). Then Theorem 2 can be readily
applied to G(V, F ) and A.

B. Useful Lemmas

Next, we present several lemmas which play vital roles in
application of Theorem 2 to DDSA. The proofs are included
in the Appendix B.

Lemma 2: Given an undirected chordal graph G(V, F )
with its maximum cliques C = {C1, C2, · · · , Cp}. For any
symmetric matrix A ∈ Sn(F ) and matrix B ∈Mn(H) where

H = {(i, j) ∈ V × V : i 6= j,

∃ r, i, j ∈ Cr, adjG(i) \ Cr = adjG(j) \ Cr},
(8)

AB ∈Mn(F ) and BA ∈Mn(F ).
Remark 1: Lemma 2 characterizes the structure of B

allowing AB and BA to inherit the chordal sparsity pattern
of A. In fact, two categories of elements (i, j) satisfy the
defining property stated in (8). First, i and j are inner vertices
of the same maximal clique Cr, i.e. adjG(i) ⊆ Cr and
adjG(j) ⊆ Cr. Second, vertex i and j are adjacent to the same

vertices outside the clique they both belong to. If nonzero
elements of B are only allowed at (i, j) from above two
categories, the multiplication AB will not create new nonzero
elements outside F thus inherit the sparsity of A.

Lemma 3: Given m chordal graphs G(k)(V (k), F (k)),
k = 1, 2, · · · ,m of exactly the same structure, the max-
imum cliques of the kth graph are denoted by C(k) =

{C(k)
1 , C

(k)
2 , · · · , C(k)

p }. Another graph G(V, F ) is con-
structed as follows:

V = ∪mk=1V
(k) (9)

F = {(i, j) ∈ ∪pr=1(Cr × Cr) : i 6= j} (10)

where Cr = ∪mk=1C
(k)
r . Then G(V, F ) is a chordal graph with

C = {C1, C2, · · · , Cp} being the maximum cliques.
Remark 2: Lemma 3 states that a large chordal graph can

be constructed from a group of small chordal graphs with the
same structure by merging corresponding maximum cliques of
small chordal graphs.

Lemma 3 is useful when dealing with the block matrix
with each block having the same chordal sparsity pattern. The
following corollary is a direct consequence of Lemma 3.

Corollary 1: Let

Φ =

Φ11 · · · Φ1m

...
. . .

...
Φm1 · · · Φmm

 (11)

be a nm×nm symmetric matrix with each block Φij ∈Mn.
G(V, F ) is a chordal graph with vertices V = {1, · · · , n}
and maximum cliques C = {C1, C2, · · · , Cp}. If Φij ∈
Mn(F ),∀1 ≤ i, j ≤ m, then Φ is associated with chordal
graph G′(V ′, F ′), i.e. Φ ∈ Snm(F ′) where V ′ = ∪m−1

k=0 (kn+
V ) and F ′ = {(i, j) ∈ ∪pr=1(∪m−1

k=0 (kn+Cr))× (∪m−1
k=0 (kn+

Cr)) : i 6= j}. G′(V ′, F ′) is a chordal graph with

C ′r = ∪m−1
k=0 (kn+ Cr), r = 1, · · · , p (12)

being the maximal cliques.
Based on Corollary 1, we then discuss a more complex

situation with the Φ11 block in (11) being fully dense and
other blocks following the same chordal sparsity pattern.

Lemma 4: Let Φ be the nm×nm block symmetric matrix
shown in (11) where Φ11 is fully dense. Φij , i + j > 2, is
associated with graph G(V, F ), i.e. Φij ∈Mn(F ),∀i+j > 2.
G(V, F ) is a chordal graph with vertices V = {1, · · · , n}
and maximal cliques C = {C1, C2, · · · , Cp}. Define V̂ =
∪1≤r,t≤p(Cr ∩ Ct). Then Φ is associated with chordal graph
G∗(V ∗, F ∗), i.e. Φ ∈ Snm(F ∗) where V ∗ = ∪m−1

k=0 (kn+ V )
and F ∗ = {(i, j) ∈ ∪pr=0C

∗
r × C∗r : i 6= j} with

C∗0 = V ∪
(
∪m−1
k=1 (kn+ V̂ )

)
(13)

C∗r = ∪m−1
k=0 (kn+ Cr), r = 1, · · · , p. (14)

Accordingly, C∗ = {C∗0 , C∗1 , · · · , C∗p} are the maximal cliques
of G∗(V ∗, F ∗).

Remark 3: The structure of Φ described in Lemma 4 is
what will be encountered in the DDSA. If the sizes of V̂ and
Cr, r = 1, · · · , p are much smaller than n, the sizes of C∗r , r =
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0, · · · , p would be much smaller than nm. Then Theorem 2
can be employed to decompose the PSD condition on Φ into
PSD conditions on much smaller matrices.

IV. STRUCTURE-EXPLOITING DELAY-DEPENDENT
STABILITY ANALYSIS OF LOAD FREQUENCY CONTROL

This section presents the techniques to exploit chordal
sparsity and symmetry in DDSA of LFC.

A. Exploiting Chordal Sparsity

In practical problems, like power system LFC, the system
matrices A and Ad exhibit strong sparsity. We introduce the
aggregate system matrix

Ā = |A|+ 1n|Ad| (15)

where 1n denotes the n×n all-ones matrix, and the aggregate
sparsity pattern graph G(V,E) with V = {1, 2, · · · , n} and
E = {(i, j) ∈ V × V : i 6= j, |[Ā]ij | + |[Ā]ji| 6= 0}. The
sparsity of the system matrices is thus represented by the
sparsity of graph G(V,E). However, the sparsity of the system
matrices do not readily lead to the sparsity of the LMI (3)
and (4) due to the full flexibility of weighting matrices. To
take advantages of the sparsity of system matrices, we need
to properly restrict the structure of weighting matrices Q1,
Q2, R and S so that the LMI (3) and (4) can inherit the
sparsity from system matrices. This idea is made precise by
the following theorem.

Theorem 3: Let G(V, F ) be a chordal extension of the
aggregate sparsity pattern graph G(V,E) of system (1) as
defined above. C = {C1, C2, · · · , Cp} are the maximal cliques
of G(V, F ). H is the edge set defined in (8). Let P ∈ Sn,
Q1,Q2 ∈ Sn(F ), R ∈ Sn(H) and S ∈ Mn(F ). Then Ψ
(3) is associated with the chordal graph G′(V ′, F ′) defined
in Corollary 1 with m = 2, and Φ (4) is associated with the
chordal graph G∗(V ∗, F ∗) defined in Lemma 4 with m = 4.

Proof: According to Lemma 2, Q1,Q2 ∈ Sn(F ), R ∈
Sn(H) and S ∈ Mn(F ) imply that all blocks of Φ except
Φ11 are in Mn(F ), and Φ11 is fully dense in general, i.e. Φ
satisfies the conditions in Lemma 4. Therefore, Φ ∈ S4n(F ∗)
where the chordal graph G∗(V ∗, F ∗) is defined in Lemma
4 with m = 4. Moreover, since each block of Ψ belongs
to Mn(F ), Ψ ∈ S2n(F ′) with the chordal graph G′(V ′, F ′)
defined with m = 2 in Corollary 1.

Remark 4: As the consequence of Theorem 3, all matrices
except P in Theorem 1 with PSD conditions are associated
with related chordal graphs, i.e. Q1,Q2,R ∈ Sn(F ), Ψ ∈
S2n(F ′) and Φ ∈ S4n(F ∗). Therefore, Theorem 2 can be
employed to decompose these PSD conditions into smaller
ones.

The effects of enforcing chordal sparsity on weighting
matrices as described in Theorem 3 are twofold. First, the
number of decision variables is reduced; Second, the sizes of
the PSD conditions are reduced. Both effects contribute to the
improvement of numerical tractability. However, by restricting
the structure of weighting matrices Q1,Q2,R and S, the
obtained stability criterion becomes more conservative than
Theorem 1, which is the price has to be paid for improving

the numerical tractability. The conservatism brought by the
structure restriction of weighting matrices will be assessed by
numerical studies in section V. Note that we do not enforce
chordal sparsity on P due to the experience that enforcing
chordal sparsity on P will make the stability criterion overly
conservative thus useless in practice. This is in stack contrast
to the pure control theory paper [20] which enforces sparsity
on P and exploits the sparsity of ATP + PA.

Consider the single-area LFC with turbine governor model
shown in Fig. 1 as an example. It can be verified by definition
that the graph related to Ā of single-area LFC shown in
Fig. 3 is already a chordal graph without adding edges, i.e.
F = E. The maximal cliques of this chordal graph are
Ci = {∆Pc,∆f,∆Pvi,∆Pmi}, i = 1, 2, · · · , n. The edges
that belong to set H defined in (8) are shown with red dotted
lines. By restricting the structures of weighting matrices as
stated in Theorem 3, the (2ng+2)×(2ng+2) PSD conditions
on Q1,Q2,R can all be reduced to 4 × 4 PSD conditions
on their submatrices indexed by the maximal cliques. The
PSD conditions on Ψ and Φ can also be reduced according to
the maximal cliques of G′(V ′, F ′) and G∗(V ∗, F ∗) given in
Corollary 1 and Lemma 4, respectively.

Fig. 3: Chordal graph for single-area LFC. The maximal
cliques are Ci = {∆Pc,∆f,∆Pvi,∆Pmi}, i = 1, 2, · · · , n.

B. Exploiting Symmetry

Due to the full flexibility of weighting matrix P , the DDSA
is still computationally intensive even when chordal sparsity
is exploited. We need to further restrict the structure of P by
exploiting symmetry.

The basic idea rests on the observation that many elements
of matrix P take very similar values when we directly conduct
DDSA using Theorem 1 on a small-scale LFC system. The
fundamental reason for this phenomenon is the highly symmet-
ric structure of LFC control loops shown in Fig. 2 and similar
parameters of generation units. Note that P is the weighting
matrix related to the first term in LKF (2). If the “nature”
of the state variable pair (i, j) is the same as that of state
variable pair (k, l), [P ]ij and [P ]kl should take the similar
values. For example, in a single-area LFC, assume that unit i
and unit j have similar parameters. In the LKF of the system,
the coefficients of ∆f∆Pvi and ∆f∆Pvj should take similar
values because ∆Pvi and ∆Pvj are of the same relation to
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TABLE I: Orbits of Group Σ Operating on Index Pair (i, j)

(i, j) O(i, j)

i, j /∈ Ig {(i, j)}
(i, ilgk ), i /∈ Ig {(i, ilgh ) : gh ∼ gk}
(ilgk , i), i /∈ Ig {(ilgh , i) : gh ∼ gk}

(ilgk , i
m
gk

) {(ilgh , i
m
gh

) : gh ∼ gk}
(ilgk , i

m
gh

), gk 6= gh {(ilgk′ , i
m
gh′ ) : gk′ ∼ gk,∼ gh′ ∼ gh, k′ 6= h′}

∆f . It is also the case for ∆f∆Pmi and ∆f∆Pmj , ∆Pc∆Pvi
and ∆Pc∆Pvj , ∆Pc∆Pmi and ∆Pc∆Pmj , etc. Moreover, we
conjecture that although the parameters of generation units are
different in practice, enforcing the above-mentioned symmetry
on P would not introduce much conservatism to the results
of DDSA.

To formalize the idea described above, we need to introduce
the notion of permutation group. A permutation σ is a bijective
map from set {1, 2, · · · , n} to itself. For our propose, here n is
the dimension of the system matrix. A set of permutations Σ
is called a permutation group if it is closed under composition
and contains the identity map. The permutation group of
concern to us is constructed as follows:

1) Endow the set of all generation units {g1, · · · , gng
} with

an equivalence relation ∼. We say gh ∼ gk if and only
if they belong to the same control area and their turbine-
governor systems have similar structure and parameters.

2) Let {i1gk , · · · , i
p
gk
} be the indices of the state variables

related to the turbine-governor system of generation unit
gk, and Ig =

⋃
∀k,l{ilgk}. Define the permutation group Σ

as the set of all permutations satisfying σ(i) = i if i /∈ Ig
and ∀gk, ∃gh ∼ gk such that σ(ilgk) = ilgh ,∀1 ≤ l ≤ p.

The definition of the permutation group given above allows us
to establish a equivalence relation on pairs of state variables:
(i, j) ∼ (k, l) if and only if there exists σ ∈ Σ such that
k = σ(i) and l = σ(j). Hence the vague idea of ”state vari-
able pair (i, j) and (k, l) are of the same nature” is precisely
characterized by the equivalence relation (i, j) ∼ (k, l). As
a result, [P ]ij and [P ]σ(i)σ(j) are expected to take the same
value, i.e. [P ]ij = [P ]σ(i)σ(j),∀σ ∈ Σ and we say P is Σ-
invariant. To precisely characterize the structure of P , we need
to introduce the concept of the orbit. The orbit to which the
pair (i, j) belong under the permutation group Σ is given by

O(i, j) = {(σ(i), σ(j))|σ ∈ Σ}. (16)

It is well known that the orbits partition the set on which
the group operates [25], i.e. the set {1, · · · , n} × {1, · · · , n}
is partitioned into several orbits O1,O2, · · · ,Or. Based on
the definition of the permutation group Σ, we explicitly show
the structures of the orbits in Table I. Matrix P thus takes
the same value on each orbit. For every k ∈ {1, · · · , r} we
define B̂k ∈ {0, 1}n×n by [B̂k]ij = 1 if (i, j) ∈ Ok and
[B̂k]ij = 0 otherwise. Then B̂1, · · · , B̂r form a basis of the
space of Σ-invariant matrices (not necessarily symmetric). The
basis of the space of symmetric Σ-invariant matrices can then
be obtained by setting Bk = B̂h + B̂l if B̂T

h = B̂l and
Bk = B̂k if B̂T

k = B̂k. Therefore, P is parametrized by
P =

∑p
k=1 pkBk.

To exemplify the effects of the above procedure, we first
consider a single-area LFC with three generation units. The
turbine governor models of all generating units are as shown
in Fig. 1 and we assume all generating units are all similar
to each other. Then parametrized matrix P =

∑13
k=1 pkBk

is depicted in Fig. 4. The number of decision variables are
reduced from (2ng + 2)(2ng + 3)/2 to 13.

Fig. 4: Structure of the symmetric Σ-invariant matrix P for a
single-area LFC with three generation units

The same procedure can be readily applied to three-area
LFC. We consider a three-area LFC scheme with three gen-
eration units in each area and generation units in each area
are assumed to be similar to each other. To simplify the
presentation, we partition the weighting matrix P into six
independent blocks, i.e.

P =

P11 P12 P13

P T
12 P22 P23

P T
13 P

T
23 P33

 (17)

where Pii(i = 1, 2, 3) represents the coefficients of quadratic
term within the control area i, and Pij denotes the coefficients
of the cross-product term between area i and area j. Since the
structure of Pii is similar to that of single-area LFC, we only
show the structure of Pij in Fig. 5. The number of decision
variables in Pij is reduced from (2ng + 3)2 to 25.

Fig. 5: Structure of the symmetric Σ-invariant partial matrix
Pij for a three-area LFC with three generation units in each
area

The symmetry-exploiting technique described above signif-
icantly reduces the number of decision variables, which con-
tributes to the improvement of numerical tractability. However,
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the structure restriction of weighting matrix P will also bring
additional conservatism which will be assessed by numerical
studies in section V.

C. Implementation Issues

The main steps of structure-exploiting DDSA are summa-
rized as follows:

Step1. Obtain a chordal extension G(V, F ) and its maximal
cliques of the aggregate sparsity pattern graph. This
can be accomplished by performing a Cholesky fac-
torization to Ā + ĀT + εI (Here ε is any positive
number to guarantee the positive definiteness of the
matrix to be factorized) with approximate minimum
degree ordering, i.e. Ā + ĀT + εI = LTL. The
sparsity pattern of the Cholesky factor defines the
chordal extension and the maximal cliques, i.e. F =
{(i, j) ∈ V × V : i 6= j, |[L]ij |+ |[L]ji| 6= 0}.

Step2. Obtain the edge set H defined in (8) and restrict the
structure ofQ1,Q2,R and S as:R,Q1,Q2 ∈ Sn(H)
and S ∈ Mn(H). Note that although Theorem 3
only requires Q1,Q2 ∈ Sn(F ) and S ∈ Mn(F ),
we found that further restricting Q1,Q2 ∈ Sn(H)
and S ∈ Mn(H) does not bring much conservatism
in practice. Under above structure restriction of the
weighting matrices, Theorem 3 guarantees the exis-
tence of chordal sparsity in the LMIs of Theorem 1.

Step3. Identify the equivalence relation among generation
units and the permutation group Σ on the indices of
state variables, and find out the orbits O1,O2, · · · ,Or
according to Table I.

Step4. Find out the basis B1, · · · ,Br of all possible weight-
ing matrix P with desirable symmetry structure ac-
cording to the orbits of permutation group Σ. Then P
is restricted as P =

∑p
k=1 pkBk.

Step5. Form the LMIs in Theorem 1 and reformulate it with
the chordal-structured matrix decomposition (Theorem
2). This step can be implemented conveniently using
existing software package SparseCoLO which auto-
matically detects the chordal structure in general semi-
definite programming (SDP) and reformulates the SDP
to facilitate the solution using standard solvers [24].

Step6. Solve the obtained new LMIs with standard LMI
solvers.

It it worth mentioning that the above procedure is to-
tally algorithmic and does not reply on specific models of
turbine-governor systems and AGC controllers. Hence the
proposed method is adaptive to different models employed.
Fig. 6 shows the difference between the proposed structure-
exploiting DDSA and the direct DDSA. In the structure-
exploiting DDSA, the stability criterion is pre-processed by
the sparsity and symmetry exploiting techniques before solved
by the standard LMI solver. Whereas the stability criterion
is directly sent to the solver without any processing in the
direct DDSA. The practical effects of the pre-processing will
be comprehensively assessed by numerical studies in the next
section.

Fig. 6: Procedures of direct and structure-exploiting DDSA

V. NUMERICAL RESULTS

This section presents the numerical studies of the pro-
posed structure-exploiting DDSA with comparison to the
direct DDSA. The computational performance and introduced
conservatism of the proposed structure-exploiting techniques
are analyzed in details. The methods are implemented in
MATLAB 2015b with YALMIP [26] as the modeling tool
and SDPT3 [27] as the solver. SparseCoLO [24] is used to
automates the chordal-structured matrix decomposition. The
program runs on a Win8 PC with a 3.0 GHz CPU and 24 GB
RAM.

The numerical tests are based on 10 unit 39 bus New Eng-
land system (NE39). Larger test systems are constructed by
directly scale up the NE39. For example, the 200 unit system
is obtained by merging 20 NE39 systems. The generator inertia
data can be found in [28] and the generator rated power and
load demand are extracted from MATPOWER [29]. The load
damping D in each synchronous area is assumed to be 1%
total load/Hz. The typical values for droop characteristic R
of each governor vary from 3% to 7% p.u./rated power. The
turbine-governor system of each unit is modelled as in Fig.
1. The typical parameters for turbine-governor systems are
Tg = 0.08s and Tt = 0.40s [15]. In every numerical test, the
actual values for Tg , Tt and R are randomly generated in the
range of 1±χ% of the typical values given above. The value of
χ varies from 0 to 50 in the tests to reflect the different degree
of non-symmetry from parameter variation. The participation
factors are also randomly selected between 0 and 1. Three-area
test cases are obtained by connecting three single-area systems.
The connection parameters are T12 = 0.20, T13 = 0.25,
T21 = 0.20, T23 = 0.12, T32 = 0.25 and T32 = 0.12.

A. Computational Efficiency

The proposed structure-exploiting DDSA has been em-
ployed in both single-area and three-area LFC schemes. For
single-area problems, the structure-exploiting techniques are
applied to Theorem 1. For three-area problems, Theorem 1 is
no longer applicable since three independent time delays exist
in the whole system and Theorem 1 can only tackle single time
delay. In this case, we apply the structure-exploiting technique
to the stability criterion dealing with multiple constant delays
proposed in our previous paper [4]. Fig. 7 shows the sparsity
pattern of matrices in Sn(F ) and Sn(H) decribed in Theorem
3 for single-area LFC with 50 generation units, and Fig. 8
depicts the sparsity pattern of matrices in Sn(F ) and Sn(H)
for three-area LFC with 20 generation units in each area. Both
figures give us intuitive ideas about the sparsity of LFC loops
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and the significant reduction in decision variables in weighting
matrices when sparsity is exploited.
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Fig. 7: Sparsity pattern of matrices in Sn(F ) (left) and Sn(H)
(right) described in Theorem 3 for single-area LFC with 50
generation units
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Fig. 8: Sparsity pattern of matrices in Sn(F ) (left) and Sn(H)
(right) described in Theorem 3 for three-area LFC with 20
generation units in each area

In the first group of tests, we fix the typical value of R
to be 5% and set χ = 25. Structure-exploiting DDSA and
direct DDSA are conducted on LFC systems with different
numbers of generation units. The computational performance
statistics are summarized in Table II. Column 2 and 3 denote
the numbers of generation units and the orders of the systems,
respectively. Four statistics are used to assess the scale of
the LMIs to be solved with both methods. no. psd and max
psd denote the number and maximal size of PSD constraints,
respectively. Since LMIs are transformed into standard SDP
forms before solving by conic program solvers, the numbers of
equality constraints (m) and decision variables (n) in standard
primal form [27] are also taken as indicators of the problem
scales. Moreover, solver time in Table II denotes the CPU time
in seconds for SDPT3 to solve corresponding problems. As
shown in Table II, by exploiting the chordal sparsity in DDSA,
the numbers of PSD constraints increase whereas the sizes of
PSD constraints decrease. Note that Theorem 3 only proves the
existence rather than the uniqueness of the chordal structure
in the LMIs after restricting the structure of the weighting
matrices. SparseCoLO automatically selects a “good” chordal
extension by merging some maximal cliques in the cliques
tree to balance the increase in the number and decrease in
the size of PSD constraints [30]. In general, by exploiting
both chordal sparsity and symmetry, the decrease of m and n

showed in Table II indicates the significant reduction in the
scales of LMIs, which is further reflected in the solver time
of each problem. For both single-area and multi-area LFC,
direct DDSA is numerically tractable for systems with less
than around 40 generation units, whereas structure-exploiting
DDSA applies to systems with hundreds of generation units.
For problems solvable by both methods, the solver time of
structure-exploiting DDSA is two orders of magnitude less
than that of direct DDSA. In a real-world power system, there
could be hundreds of generation units. The improvement of
the numerical tractability of the DDSA method would allow
more detailed modeling for each control area, which increases
the accuracy and reliability of the results of DDSA.

B. Evaluation of Additional Conservatism

To exploit chordal sparsity and symmetry in DDSA, struc-
ture restrictions are enforced on the weighting matrices, which
inevitably brings additional conservatism. If too much con-
servatism is introduced, the method could become useless in
practice. In the second group of tests, we evaluate the intro-
duced conservatism by comparing the delay margins (stable
delay region) obtained by the structure-exploiting DDSA and
the direct DDSA on relatively small-scale systems. The typical
value of R and χ are also set to be 5% and 25, respectively.
Table. III reports the comparison of delay margins by two
methods on single-area LFC with ten generation units under
different parameters of the PI controller. The results show that
the delay margins obtained by the structure-exploiting DDSA
(τse) are uniformly larger than 90% of the delay margins by
the direct DDSA (τdr), which indicates that the structure-
exploiting techniques only introduce minor conservatism. Ta-
ble IV lists the side lengths of the cubic stable delay region
of three-area LFC obtained by both methods. For presentation
simplicity, each control area is assumed to have the same PI
parameters. The results in Table IV also confirm the conclusion
that the structure-exploiting techniques only introduce minor
conservatism. These tests numerically validate the conjecture
we raised in section-IV-B. To better understand the underlying
mechanism, we compare the mesh plots of obtained weighting
matrices P andQ1 by two methods in Fig. 9 and Fig. 10. Both
figures show that the overall structure of weighting matrices
obtained by the structure-exploiting DDSA looks very similar
to that of weighting matrices obtained by the direct DDSA. In
other words, the proposed structure restrictions on weighting
matrices are not very restrictive, so the structure-exploiting
techniques only bring minor conservatism. Fig. 11 shows
the comparison of frequency deviation for 0.1 p.u. step load
disturbance of single-area LFC with τse and τdr in Table III.
As shown in the time-domain simulation, both τse and τdr
are conservative approximation to the underlying true delay
margins, but τse possesses a little more conservatism than τdr.

In the following, we further define the degree of additional
conservatism as

ρc = 1− τse
τdr

. (18)

In the third group of tests, we investigate the sensitivity
of ρc to the parameter χ% and the typical value of R.
The tests are performed on 10-unit single-area LFC. The
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TABLE II: Comparison of Computational Performance of the Direct and Structure-exploiting DDSA

ng ord. Direct DDSA Stucture-exploiting DDSA

no. psd max psd m n solver time (s) no. psd max psd m n solver time (s)

1-area

30 62 6 248 11656 92256 387.77 157 66 876 12734 2.03
50 102 6 408 31416 249696 inf. (out of mem.) 257 106 1436 29154 4.51
150 202 6 808 122816 979296 inf. (out of mem.) 507 206 2836 98204 19.03
200 402 6 1608 485616 3878496 inf. (out of mem.) 1007 406 5636 356304 89.11
500 1002 6 4008 3014016 24096096 inf. (out of mem.) 2507 1002 14036 2090604 827.32

3-area

3*10 68 8 476 16422 258944 810.77 280 100 1738 22917 5.88
3*20 128 8 896 57792 917504 inf. (out of mem.) 551 146 3225 54449 30.30
3*40 248 8 1736 216132 3444224 inf. (out of mem.) 1091 266 5954 164262 136.61
3*60 368 8 2576 475272 7583744 inf. (out of mem.) 1631 386 8640 331484 404.87

TABLE III: Comparison of Delay Margins (seconds) by Two
Methods on Single-area LFC with 10 Generation Units

(KP ,KI) τse τdr ratio

(0.05,0.05) 27.1765 28.5269 95.27%
(0.05,0.1) 13.4079 13.8895 96.53%
(0.05,0.15) 8.8376 8.9960 98.24%
(0.1,0.05) 26.3379 27.8265 94.65%
(0.1,0.1) 12.9913 14.1550 91.78%

(0.1,0.15) 8.5794 9.2047 93.21%

TABLE IV: Comparison of length of the Cubic Stable Delay
Region (seconds) by Two Methods on Three-area LFC with
10 Generation Units in Each Area

(KP ,KI) τse τdr ratio

(0.05,0.05) 25.4993 26.4615 96.36%
(0.05,0.1) 12.5912 12.7927 98.43%
(0.05,0.15) 8.2242 8.2516 99.67%
(0.1,0.05) 24.6634 25.7419 95.81%
(0.1,0.1) 12.1820 13.0518 93.34%

(0.1,0.15) 8.0786 8.4567 95.53%

value of χ% reflects the degree of the non-symmetry of the
control loops. The larger χ% is, the more non-symmetric the
system is and the more conservatism could be introduced by
symmetry-exploiting technique. Fig. 12 shows the relationship
between ρc and χ% which confirms our qualitative analysis.
It is shown ρc increases quite slow as χ% increases and
ρc is less than 12% even when system parameters Tg , Tt
and R are subject to maximal deviation of 50% of related
typical values. In other words, the symmetry-exploiting is
quite robust to the non-symmetry originated from parameter
deviation. From our numerical experience, we found ρc was
quite sensitive to the typical value of droop characteristics R.
Fig. 13 reveals the quantitative relationship between ρc and
typical value of R. It is observed that the smaller the typical
value of R is, the more conservatism will be introduced by
the structure-exploiting techniques. In fact, the smaller R is,
the stronger the connection between ∆f and ∆Pvk is. The
sparsity-exploiting technique brings more conservatism when
the connection between ∆f and ∆Pvk becomes stronger. In
general, compared with its significant speed-up and scale-up
effects, the proposed structure-exploiting techniques introduce
reasonably acceptable degree of conservatism.
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Fig. 9: Comparison of mesh plots of P obtained by two
methods on single-area LFC with 10 generation units

VI. DISCUSSION

Although the main focus of this paper is stability analysis,
the proposed method can also be extended to controller design.
The controller should not only guarantee system stability but
also provide desirable dynamic performance. In the framework
of robust control, the dynamic performance is represented
by some robust performance index (RPI), e.g. H∞ norm
sup
ω 6=0

‖z‖2
‖ω‖2 where ω is the disturbance and z is the controlled

output. In LFC, ω usually represents load disturbance and
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Fig. 10: Comparison of mesh plots of Q1 obtained by two
methods on single-area LFC with 10 generation units

z often includes frequency deviation and area control errors
[15]. Every delay-dependent stability criterion can be extended
to the corresponding delay-dependent BRL which provides
guarantee for both system stability and dynamic performance
thus can be used to design an appropriate controller. For
example, the BRL corresponding to Theorem 1 is stated as
follows: consider a system expressed by{

ẋ(t) = Ax(t) +Adx(t− d(t)) +Bωω(t)
z(t) = Cωx(t)

(19)

where matrix Ad is a function of the design parameter
(KP ,KI). Then the system (19) is asymptotically stable and
sup
ω 6=0

‖z‖2
‖ω‖2 < γ for any delay 0 ≤ d(t) ≤ τ and |ḋ(t)| ≤ µ if

there exist P � 0, Q1 � 0, Q2 � 0, R � 0 and S such that
Ψ < 0 and

Φ11 Φ12 S τA>R PBω CT
ω

Φ>12 Φ22 −S +R τA>dR 0 0
S> −S> +R −R−Q2 0 0 0
τRA τRAd 0 −R 0 0
BT
ωP 0 0 0 −γIn 0
Cω 0 0 0 0 −γIn

 ≺ 0

(20)
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Fig. 11: Comparison of system Frequency response of the 10-
unit single-area LFC with the delay margins obtained by two
methods

where Ψ, Φ11, Φ12 and Φ22 are defined as in Theorem 1.
As shown above, the BRL is also a set of LMIs very similar
to the stability criterion. Therefore, the sparsity and symmetry
exploiting techniques proposed in this paper can be readily
applied to the BRL to accelerate and scale up the control
design.

More specifically, based on the framework in [31], we
can design a delay-dependent H∞ robust controller which
minimizes the RPI (H∞ norm) while maintaining stability for
any delays less than a preset upper bound. By simply replacing
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Fig. 12: Degree of additional conservatism of structure-
exploiting techniques versus χ%. Typical value of R is set
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Fig. 13: Degree of additional conservatism of structure-
exploiting techniques versus the typical Value of R. χ% is
set to be 25%.

Lemma 1 in [31] with the above-mentioned dealy-dependent
BRL, a numerical method to design such controller is readily
available. Note that the LMI needs to be solved iteratively
for probably hundreds of times to converge to the optimal
controller parameters; hence the accelerating and scaling-up
effects provided by the proposed structure-exploiting tech-
niques could be even more significant.

In addition, LMI-based delay-dependent stability criteria are
employed to calculate the delay margins of wide-area damping
controllers (WADC) installed at generator excitation systems
[18] and FACTS devices [19]. Delay-dependent BRLs are also
employed in [32] to design state-feedback WADC. Therefore,
the structure-exploiting techniques proposed in this paper are
also of potential to be applied to the analysis and synthesis of
the time-delay WADC.

VII. CONCLUSION

In this paper, the chordal sparsity and symmetry of the
graph related to time-delay LFC loops have been exploited

to improve the numerical tractability of DDSA. The graph-
theoretic analysis provides guidance for restricting the struc-
ture of weighting matrices in DDSA, such that the LMIs
possess chordal sparsity. The symmetry of LFC loops has been
utilized to reduce the number of decision variables. At the
price of introducing minor conservatism, case studies show
the numerical tractability and computational efficiency have
been improved by orders of magnitude. Lemma 2 in this paper
is a generalization of the results in [20]. Our result provides
a general approach for ATP + PA to inherit the chordal
sparsity of A, whereas paper [20] discusses several special
cases. Note that the conservatism introduced by structure-
exploiting techniques are dependent on system parameters.
One future direction is to derive theoretical bounds for the
introduced conservatism for a certain class of systems. Another
future direction is to extend the proposed method to DDSA of
WADC.

APPENDIX A
STATE-SPACE MODEL OF TIME-DELAYED LFC

The state-space model for the open-loop system in area i is{
ẋi(t)= Aixi(t) +

∑N
j=1,j 6=iAijxj(t) +Biui(t−τi)

yi(t) = Cixi(t)
(21)

where

x>i =
[
∆fi,∆Ptie−i,∆Pm1i, · · ·,∆Pmngi,∆Pv1i, · · ·,∆Pvngi

]
yi = ACEi

Ai =

 A11i A12i 02×ng

0ng×2 A22i A23i

A31i 0ng×ng
A33i


Aij =

 0 0 01×2ng

−2πTij 0 01×2ng

02ng×1 02ng×1 02ng×2ng


Bi =

 02×1

0ng×1

B3i

 , Fi =

 −1
Mi

0(1+ng)×1

0ng×1


Ci =

[
βi 1 01×2ng

]
, Di =

[
0 − 1 01×ng

]
A11i =

[ −Di

Mi
− 1
Mi

2π
∑N
j=1,j 6=i Tij 0

]
,A12i =

[ 1
Mi
· · · 1

Mi

0 · · · 0

]
A22i = −A23i = diag

{− 1
Tt1i

, · · · ,− 1
Ttngi,

}
A31i =

[ −1
Tg1iR1i

· · · −1
TgngiRngi

0 · · · 0

]>
B3i =

[
α1i

Tg1i
· · · αngi

Tgngi

]>
A33i = diag

{ −1
Tg1i

, · · · , −1
Tgngi

}
The PI controller in area i takes the form

ui(t) = −KPiACEi −KIi

∫
ACEidt (22)

To simplify the analysis, further define the virtual state vec-
tors x̄i = [x>i ,

∫
y>i ]>, the closed-loop system can then be

rewritten as

˙̄xi(t) = Āiix̄i(t) + Ādiix̄i(t− τi) +
∑N
j=i,j 6=i Āij x̄j(t)

(23)
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where

Āii =

[
Ai 0
Ci 0

]
, Ādii =

[
−KPiBiCi −KIiBi

02ng+2 0

]
Āij =

[
Aij 0
0 0

]

By defining the state vector as x = [x̄>1 , x̄
>
2 , · · · , x̄>n ]>,

model (23) can be easily rearrange into the standard form

ẋ(t) = Ax(t) +
∑N
i=1Adix(t− τi) (24)

where

A =

 Ā11 · · · Ā1N

...
. . .

...
ĀN1 · · · ĀNN

 ,Adi =


0 · · · 0 · · · 0
...

. . .
...

0 Ādii 0
...

. . .
...

0 · · · 0 · · · 0


.

APPENDIX B
PROOFS

Proof of Lemma 2: Matrix B can be written as B =∑
(i,j)∈H bijEij where bij ∈ R. Therefore it suffices to show

AEij ∈ Mn(F ) and EijA ∈ Mn(F ), ∀(i, j) ∈ H . AEij is
obtained by putting the ith column of A in the jth column of
a n× n zero matrix. Let G′ denote the graph associated with
AEij . From a graph perspective, we have

adjG′(j) = adjG(i) ∪ {i} \ {j}
= (adjG(i) ∩ Cr) ∪ (adjG(i) \ Cr) ∪ {i} \ {j}
= (adjG(j) ∩ Cr) ∪ (adjG(j) \ Cr)
= adjG(j)

(25)
where the first equality comes from the formation of AEij
just described and the third equality comes from the com-
pleteness of clique Cr and the defining property of (i, j) ∈ H
in (8). From (25), we conclude AEij ∈ Mn(F ). Finally,
EijA ∈ Mn(F ) results from ATEji ∈ Mn(F ) noticing the
undirectness of graph G.

Proof of Lemma 3: Since G(k)(V (k), F (k)) is chordal,
there exists a clique tree T (k)(C(k), E(k)), ∀k = 1, 2, · · · ,m
according to Lemma 1, and all the clique trees can be chosen
with exactly the same structure. Let T (C, E) denote the tree
on C analogous to T (k)(C(k), E(k)). According to Lemma 1,
it suffices to show T (C, E) is a clique tree of graph G(V, F ).
We first show C = {C1, C2, · · · , Cp} are maximum cliques.
It is explicitly shown in (10) that Cr, ∀r = 1, · · · , p, is a
clique of G(V, F ). To prove the maximality, assume C

′

r ⊃ Cr
is another clique. Pick one vertex v ∈ C

′

r \ Cr. We have
v ∈ V (k) for some k ∈ {1, 2, · · · ,m}. Then Cr∩V (k) ⊃ C(k)

r

is also a clique of G(k)(V (k), F (k)), which contradicts with the
maximality of C(k)

r . We then show the CIP holds for T (C, E).
For any Ci, Cj ∈ C,

Ci ∩ Cj =
(
∪mk=1C

(k)
i

)
∩
(
∪mk=1C

(k)
j

)
= ∪mk=1

(
C

(k)
i ∩ C(k)

j

)
.

(26)

For any Cr on the path connecting Ci and Cj , C
(k)
r is also

on the path connecting C
(i)
r and C

(j)
r due to the similarity

of T (C, E) and T (k)(C(k), E(k)). Since T (k)(C(k), E(k)) is a
clique tree, C(k)

i ∩C
(k)
j ⊆ C(k)

r . Using (26), we have Ci∩Cj ⊆
∪mk=1C

(k)
r = Cr. Therefore, CIP holds for T (C, E). We finally

conclude T (C, E) is a clique tree of G(V, F ).
Proof of Lemma 4: Step 1: we show Φ ∈ Snm(F ∗), i.e.

(i, j) ∈ F ∗ if [Φ]ij 6= 0. It suffices to consider three cases.
First, note that the submatrix of ΦΦ22 · · · Φ2m

...
. . .

...
Φm2 · · · Φmm


satisfies the conditions of Corollary 1, which implies that ∀n+
1 ≤ i, j ≤ nm with [Φ]ij 6= 0, ∃1 ≤ r ≤ p, such that
(i, j) ∈ (∪m−1

k=1 (kn + Cr)) × (∪m−1
k=1 (kn + Cr)), leading to

(i, j) ∈ C∗r × C∗r . Second, ∀1 ≤ i ≤ n < j ≤ nm with
[Φ]ij 6= 0, we have (i, j mod n) ∈ F according to the chordal
structure of each block other than Φ11. Hence ∃1 ≤ r ≤ p,
such that (i, j mod n) ∈ Cr × Cr, which implies (i, j) ∈
C∗r ×C∗r by definition. Third, ∀1 ≤ i, j ≤ n, it is obvious that
(i, j) ∈ C∗0 × C∗0 .

Step 2: we prove G∗(V ∗, F ∗) is chordal by showing the
maximality of cliques C∗ = {C∗0 , C∗1 , · · · , C∗p} and the ex-
istence of a clique tree T ∗(C∗, E∗). First, the maximality of
cliques C∗ relies on the observation that C∗r * C∗t , ∀ 0 ≤
r, t ≤ p by definition. Second, we define T ∗(C∗, E∗) a tree on
C∗ as depicted in Fig. 14. To check CIP holds for T ∗(C∗, E∗),

C

C C pC

Fig. 14: Clique Tree of Chordal Graph G∗(V ∗, F ∗)

it suffices to show C∗r ∩C∗t ⊆ C∗0 , ∀ 1 ≤ r < t ≤ p. Note that

C∗r ∩ C∗t =
(
∪m−1
k=0 (kn+ Cr)

)
∩
(
∪m−1
k=0 (kn+ Ct)

)
= ∪m−1

k=0 (kn+ Cr ∩ Ct)

⊆ ∪m−1
k=0

(
kn+ V̂

)
⊆ C∗0 .

(27)

The two inclusions in (27) come from the definitions of V̂
and C∗0 , respectively. Therefore, T ∗(C∗, E∗) is a clique tree.
Using Lemma 1, we conclude G∗(V ∗, F ∗) is chordal.

Step 1 and step 2 together lead to the lemma.
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