6 research outputs found

    Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD

    Get PDF
    SummaryBackgroundOne of the major pathophysiologies in advanced chronic obstructive pulmonary disease (COPD) has been attributed to systemic inflammation. Meta-analysis of the 2005 Cochrane Database concluded the effect of nutritional supplementation alone on stable COPD was insufficient to promote body weight gain or exercise capacity. The aim of this study was to investigate the effectiveness of nutritional supplementation therapy using a nutritional supplement containing whey peptide with low-intensity exercise therapy in stable elderly patients with COPD.MethodIn stable elderly COPD patients with %IBW and %FEV1 of less than 110 and 80%, respectively, anti-inflammatory nutritional supplementation therapy was added to low-intensity exercise therapy. Thirty-six COPD patients were divided into those with and those without the ingestion of an anti-inflammatory nutritional supplement containing whey peptide, which exhibited an anti-inflammatory effect. These two groups were designated as the nutritional support and the control groups, respectively. The body composition, skeletal muscle strength, exercise tolerance, health-related QOL (HRQOL), and inflammatory cytokines were evaluated before and three months after nutritional support combined with exercise therapy in both the nutritional support group and the control group.ResultsIn the nutritional support group, the body weight, %IBW, FM, energy intake, %AC, Alb, PImax, PEmax, 6MWD, WBI, emotional function, and CRQ total were significantly increased, and the levels of hsCRP, IL-6, IL-8, and TNF-α were reduced significantly, while no significant change was noted in any item of physiological evaluation or any biomarker in the control group.ConclusionConcomitant use of a anti-inflammatory nutritional supplement containing whey peptide, which exhibits an anti-inflammatory effect, with exercise therapy in stable elderly COPD patients with %IBW<110% and %FEV1<80% may not only increase body weight but may also inhibit systemic inflammation and thus improve exercise tolerance and HRQOL

    Recognition of T Cell Epitopes Unique to Cha o 2, the Major Allergen in Japanese Cypress Pollen, in Allergic Patients Cross-Reactive to Japanese Cedar and Japanese Cypress Pollen

    No full text
    Background: Pollens from species of the Cupressaceae family are one of the most important causes of respiratory allergies worldwide. Many patients with pollinosis have specific IgE to both allergens from Japanese cedar and Japanese cypress pollen. We set out to identify T cell epitopes in Cha o 2, the second major allergen of Japanese cypress pollen. Methods: T cell lines (TCL) and T cell clones (TCC) specific to Cha o 2 were generated from allergic patients cross-reactive to Japanese cedar and Japanese cypress pollen. T cell epitopes in Cha o 2 were identified by responses of TCL stimulated with overlapping peptides. Abilities of IL-4/IFN-γ production by TCC were evaluated using enzyme immunoassay. Results: Using TCL, 11 dominant and subdominant T cell epitopes were identified in Cha o 2. The subsets of TCC were predominantly of T helper 2-type. A T cell epitope p141-160 in Cha o 2 and corresponding peptide in Cry j 2 showed high homology. Although TCC PC.205.159 responded to stimulation with p141-160 in Cha o 2, it did not respond with corresponding peptide in Cry j 2, therefore, the T cell epitope was unique to Cha o 2. Conclusions: Eleven T cell epitopes that were identified are unique to Cha o 2. Cha o 2 is a putative aeroallergen that can potentially sensitize human T cells. We concluded that generation of T cells specific to Cha o 2 in allergic patients acts as one of the causes of continuous allergic symptoms in April
    corecore