11 research outputs found

    Nitrogen Content of Leaves Affects the Nodal Position of the Last Visible Primary Tiller on Main Stems of Rice Plants Grown at Various Plant Densities

    No full text
    The nitrogen content of leaves in rice plants at various planting densities in the field and under high and low levels of nitrogen in pots were comparatively examined, and thereby the effect of the nitrogen content of leaves on the nodal positions of the last visible primary tiller on the main stem was clarified. The nodal positions of the last visible primary tiller, which determine the potential number of cumulative tillers, were negatively correlated with the planting density. However, critical nitrogen contents of leaves for tillering on a leaf-area basis (NA), and those on a dry-weight basis (NW) were estimated as 1.4-1.6 g m-2, and 3.8-4.5%, respectively, at the time when the last visible primary tiller emerged, even when the planting densities varied from 24 to197 plants m-2. The critical NA for tillering of rice plants grown under high and low levels of nitrogen fertilization was also nearly the same at the time when the primary tiller ceased to emerge. Therefore, the higher nodal position of the last visible primary tiller caused by lower plant density was attributable to the delayed canopy development and delayed competition for soil nitrogen resources. Suppression of the emergence of the primary tiller when the NA was less than 1.6 g m-2 by an insufficient supply of nitrogen was explained satisfactorily by assuming an insufficient supply of assimilates from leaves to a primary tiller bud

    Incorporation of fallow weed increases phosphorus availability in a farmer’s organic rice fields on allophanic Andosol in eastern Japan

    No full text
    <p>We investigated the amount of soil phosphorus (P) in a farmer’s paddy fields under organic farming (OF) for various periods from 0 to 22 years as well as other farmers’ fields under conventional farming. All the fields are located in allophanic Andosol with long history of P fertilizer application, and some of them have been converted to OF across years. After conversion to OF, P was supplied only with winter fallow weeds mainly Foxtail (<i>Alopecurus aequalis</i>), rice residues (rice bran and straw), and guano. We determined total-P (Tot-P) and plant-available P (Av-P), which consists of Truog-P (Tru-P) and Bray-2-P under reducing condition with ascorbic acid (Asc-P), in soils of each field. For both Av-Ps, the ratio to Tot-P increased across years under OF following quadratic functions with both linear and quadratic terms being statistically significant. The ratios showed little changes for the initial 15 (Tru-P) or 10 (Asc-P) years and increased rapidly thereafter. These temporal changes in Av-P were consistent with the rapid increase of the amount of P accumulated in the winter fallow weeds and incorporated in the fields after beginning of OF. These results led us to the hypothesis that the incorporation of winter weeds has contributed to the increase of Av-P in the organic fields across years. We tested this hypothesis by investigating temporal changes of Av-P after suspending the weed incorporation for 2 consecutive years in plots of the organic fields. Both Av-Ps were significantly greater in plots with continued weed incorporation (CWI) than those in plots with its suspension. We further found that the increase of Asc-P in plots with CWI was 4.9-fold the input of total P in the incorporated weeds. This suggests that the incorporation of winter fallow weeds enhanced soil-P availability beyond the supply of P accumulated in the weeds.</p
    corecore