49 research outputs found

    Conformational diversity of dynactin

    Get PDF
    Dynactin is a principal regulator of the minus-end directed microtubule motor dynein. The sidearm of dynactin is essential for binding to microtubules and regulation of dynein activity. Although our understanding of the structure of the dynactin backbone (Arp1 rod) has greatly improved recently, structural details of the sidearm subcomplex remain elusive. Here, we report the flexible nature and diverse conformations of dynactin sidearm observed by electron microscopy. Using nanogold labeling and deletion mutant analysis, we determined the domain organization of the largest subunit p150 and discovered that its coiled-coil (CC1), dynein-binding domain, adopted either a folded or an extended form. Furthermore, the entire sidearm exhibited several characteristic forms, and the equilibrium among them depended on salt concentrations. These conformational diversities of the dynactin complex provide clues to understanding how it binds to microtubules and regulates dynein

    p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response

    Get PDF
    Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress. Liquid-liquid phase separation of p62/SQSTM1 has been previously described, although the significance in vivo remains unclear. Here the authors show p62 droplets contain ubiquitin, autophagy-related proteins and Keap1 to serve as platform of not only autophagosome formation but also Nrf2 activation.Peer reviewe

    p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response

    Get PDF
    Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress

    Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1.

    No full text
    Leukotriene B4 (LTB4) receptor 1 (BLT1) is a G protein-coupled receptor expressed in various leukocyte subsets; however, the precise expression of mouse BLT1 (mBLT1) has not been reported because a mBLT1 monoclonal antibody (mAb) has not been available. In this study, we present the successful establishment of a hybridoma cell line (clone 7A8) that produces a high-affinity mAb for mBLT1 by direct immunization of BLT1-deficient mice with mBLT1-overexpressing cells. The specificity of clone 7A8 was confirmed using mBLT1-overexpressing cells and mouse peripheral blood leukocytes that endogenously express BLT1. Clone 7A8 did not cross-react with human BLT1 or other G protein-coupled receptors, including human chemokine (C-X-C motif) receptor 4. The 7A8 mAb binds to the second extracellular loop of mBLT1 and did not affect LTB4 binding or intracellular calcium mobilization by LTB4. The 7A8 mAb positively stained Gr-1-positive granulocytes, CD11b-positive granulocytes/monocytes, F4/80-positive monocytes, CCR2-high and CCR2-low monocyte subsets in the peripheral blood and a CD4-positive T cell subset, Th1 cells differentiated in vitro from naïve CD4-positive T cells. This mAb was able to detect Gr-1-positive granulocytes and monocytes in the spleens of naïve mice by immunohistochemistry. Finally, intraperitoneal administration of 7A8 mAb depleted granulocytes and monocytes in the peripheral blood. We have therefore succeeded in generating a high-affinity anti-mBLT1 mAb that is useful for analyzing mBLT1 expression in vitro and in vivo

    Low-dose ionizing radiation exposure represses the cell cycle and protein synthesis pathways in <i>in vitro</i> human primary keratinocytes and U937 cell lines

    No full text
    <div><p>The effects of the high-dose ionizing radiation used in radiotherapy have been thoroughly demonstrated <i>in vitro</i> and <i>in vivo</i>. However, the effects of low-dose ionizing radiation (LDIR) such as computed tomography-guided biopsies and X-ray fluoroscopy on skin cells remain controversial. This study investigated the molecular effects of LDIR on the human primary keratinocytes (HPKs) and U937 cells, monocytes-like cell lines. These cells were exposed to 0.1 Gray (Gy) X-ray as LDIR. The modulation of transcription was assessed using a cDNA array, and the protein expression after LDIR exposure was investigated using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis at 24 hours. These effects were confirmed by immunoblotting analysis. The direct effects of LDIR on the U937 cells and HPKs and the bystander effects of irradiated HPKs on U937 cells were also investigated. LDIR downregulated c-Myc in both U937 cells and HPKs, and upregulated the p21<sup>WAF1/CIP1</sup> protein expression in U937 cells along with the activation of TGFβ and protein phosphatase 2A (PP2A). In HPKs, LDIR downregulated the mTOR signaling with repression of S6 and 4EBP1 activation. Similar changes were observed as bystander effects of LDIR. Our findings suggest that LDIR inhibits protein synthesis and induces the cytokines activation associated with inflammation via direct and bystander effects, which might recapitulate the effects of LDIR in inflammated skin structures.</p></div

    The 7A8 mAb detects mBLT1-overexpressing cells.

    Get PDF
    <p><b>(A)</b> FLAG-mBLT1, FLAG-hBLT1, and FLAG-hCXCR4-overexpressing CHO cells (black outlines) and mock transfectants (gray filled histograms) were stained with anti-mBLT1 (7A8), anti-hBLT1, anti-hCXCR4, and anti-FLAG (2H8) mAbs. <b>(B)</b> Immunofluorescence staining of CHO-mBLT1 cells (right) and mock transfectants (left) using 7A8. DIC: differential interference contrast. Scale bars: 50 μm.</p

    Laminin α1 Regulates Age-Related Mesangial Cell Proliferation and Mesangial Matrix Accumulation through the TGF-β Pathway

    Get PDF
    Laminin α1 (LAMA1), a subunit of the laminin-111 basement membrane component, has been implicated in various biological functions in vivo and in vitro. Although LAMA1 is present in kidney, its roles in the kidney are unknown because of early embryonic lethality. Herein, we used a viable conditional knockout mouse model with a deletion of Lama1 in the epiblast lineage (Lama1CKO) to study the role of LAMA1 in kidney development and function. Adult Lama1CKO mice developed focal glomerulosclerosis and proteinuria with age. In addition, mesangial cell proliferation was increased, and the mesangial matrix, which normally contains laminin-111, was greatly expanded. In vitro, mesangial cells from Lama1CKO mice exhibited significantly increased proliferation compared with those from controls. This increased proliferation was inhibited by the addition of exogenous LAMA1-containing laminin-111, but not by laminin-211 or laminin-511, suggesting a specific role for LAMA1 in regulating mesangial cell behavior. Moreover, the absence of LAMA1 increased transforming growth factor (TGF)-β1–induced Smad2 phosphorylation, and inhibitors of TGF-β1 receptor I kinase blocked Smad2 phosphorylation in both control and Lama1CKO mesangial cells, indicating that the increased Smad2 phosphorylation occurred in the absence of LAMA1 via the TGF-β1 receptor. These findings suggest that LAMA1 plays a critical role in kidney function and kidney aging by regulating the mesangial cell population and mesangial matrix deposition through TGF-β/Smad signaling
    corecore