299 research outputs found

    RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.)

    Get PDF
    Background: Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. Results: De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates 2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. Conclusions: Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp

    Transition-metal(ii) complexes with a tripodal hexadentate ligand, 1,1,1-tris[2-aza-3-(imidazol-4-yl)prop-2-enyl]ethane, exhibiting incomplete total or absolute spontaneous resolution

    Get PDF
    Crystal structures and crystallisation behaviours of a series of first-row transition-metal(II) complexes bearing 1,1,1-tris[2-aza-3-(imidazol-4-yl)prop-2-enyl]ethane (H3L), [MII(H3L)]Cl(ClO4) (M = Mn, Fe, Co, Ni and Zn) were examined. These compounds crystallise in an orthorhombic crystal system with a non-enantiogenic (Sohncke) space group P212121, resulting in spontaneous resolution of the chiral complex cations. Hydrogen bonds between the imidazole N–H atoms in the tripodal ligand and chloride anions give enantiomorphic crystals with a homochiral three-dimensional network structure. In order to verify the spontaneous resolution of these compounds, solid-state circular dichroism spectra of the resulting single crystals were measured (KBr disk method). Unexpectedly, the observed spectra indicated that imbalanced formation of the enantiomorphic crystals (i.e., left-handed Λ-form vs. right-handed Δ-form complex cations) in all cases. Moreover, in the cases of NiII and ZnII compounds, predominant enantiomorphic crystals formed by spontaneous resolution were always the same (in at least ten of our recrystallisation experiments). These observations suggest that there is a certain (but as yet unknown) factor that affects the predominant deposition of either enantiomorphic crystal when spontaneous resolution takes place from a solution of a racemic mixture in which rapid racemisation occurs

    A computational model of internal representations of chemical gradients in environments for chemotaxis of Caenorhabditis elegans

    Get PDF
    The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and weathervane, which are closely related to the internal representation of chemical gradients parallel and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients must be calculated from the chemical information obtained at a single point, because the sensory neurons are located close to each other at the nose tip. To formulate the relationship between this sensory input and internal representations of the chemical gradient, this study proposes a simple computational model derived from the directional decomposition of the chemical concentration at the nose tip that can generate internal representations of the chemical gradient. The ability of the computational model was verified by using a chemotaxis simulator that can simulate the body motions of pirouette and weathervane, which confirmed that the computational model enables the conversion of the sensory input and head-bending angles into both types of gradients with high correlations of approximately r > 0.90 (p < 0.01) with the true gradients. In addition, the chemotaxis index of the model was 0.64, which is slightly higher than that in the actual animal (0.57). In addition, simulation using a connectome-based neural network model confirmed that the proposed computational model is implementable in the actual network structure.This work was supported by JSPS KAKENHI Grant Number 15H03950 to T.T and MEXT KAKENHI Grant Numbers 20115010 to T.T. and 20115002 to Y.I

    Fabrication of magnetic tunnel junctions with a metastable bcc Co3Mn disordered alloy as a bottom electrode

    Get PDF
    We fabricated MgO barrier magnetic tunnel junctions (MTJs) with a Co3Mn alloy bottom and FeCoB top electrodes. The (001)-oriented epitaxial films of the metastable bcc Co3Mn disordered alloys obtained showed saturation magnetization of approximately 1640 emu/cm3. The transmission electron microscopy showed that the MgO barrier was epitaxially grown on the Co3Mn electrode. Tunnel magnetoresistance of approximately 150% was observed at room temperature after the annealing of MTJs at 350◦C, indicating that bcc Co3Mn alloys have relatively high spin polarization

    Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamydomonas phototropin.

    Get PDF
    Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin

    Discovery of antiferromagnetic chiral helical ordered state in trigonal GdNi3_3Ga9_9

    Full text link
    We have performed magnetic susceptibility, magnetization, and specific heat measurements on a chiral magnet GdNi3_3Ga9_9, belonging to the trigonal space group R32R32 (\#155). A magnetic phase transition takes place at TNT_{\rm N} = 19.5 K. By applying a magnetic field along the aa axis at 2 K, the magnetization curve exhibits two jumps at \sim 3 kOe and = 45 kOe. To determine the magnetic structure, we performed a resonant X-ray diffraction experiment by utilizing a circularly polarized beam. It is shown that a long-period antiferromagnetic (AFM) helical order is realized at zero field. The Gd spins in the honeycomb layer are coupled in an antiferromagnetic manner in the cc plane and rotate with a propagation vector qq = (0, 0, 1.485). The period of the helix is 66.7 unit cells (180\sim 180~nm). In magnetic fields above 3~kOe applied perpendicular to the helical cc axis, the AFM helical order changes to an AFM order with qq = (0, 0, 1.5).Comment: 7 pages, 12 figure

    High-temperature Fluidized Receiver for Concentrated Solar Radiation by a Beam-down Reflector System

    Get PDF
    AbstractThis study proposes a novel fluidized receiver for absorbing concentrated solar light at high temperatures. Previously, a tubular receiver and a volumetric receiver were developed to make high-temperature air for a solar gas turbine system. The aim was to combine these elements with a tower reflector; however, it was challenging to install these heavy receivers on the top of the tower. Currently, a fluidized receiver prototype is tested by a 3 kWh solar simulator in preparation for a field test at the Miyazaki beam-down reflector system. The fluid dynamics of the prototype receiver is numerically investigated. The currently treated receiver is an inner-circulating fluidized bed spouted by concentric gas streams with high and low velocities in the center and outer annulus, respectively. The draft tube is submerged in the particles to organize particle circulation. Concentrated light irradiates the particles through a quartz window at the top of the receiver container. Such a fluidized bed was first adopted by Kodama et al. for thermochemical reactions; however, it is currently pursued for its potential as a high-temperature receiver aimed at concentrated solar power generation. Experiments of the prototype receiver (inner diameter = 45mm) demonstrated that the inner particles are heated to a temperature greater than 900°C and that an increase of the central gas velocity removes the excess temperature near the particle bed surface. A numerical computation suggests that the large-scale circulation of particles leads to the activation of thermal mixing. The currently proposed receiver is thus expected to attenuate re-radiation losses likely to occur in a conventional volumetric porous receiver. The scale-up of the receiver is being considered by the numerical computation for a field test in the Miyazaki 100 kWh beam-down reflector system

    Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function

    Get PDF
    Single-fluorescent-molecule imaging tracking (SMT) is becoming an important tool to study living cells. However, photobleaching and photoblinking (hereafter referred to as photobleaching/photoblinking) of the probe molecules strongly hamper SMT studies of living cells, making it difficult to observe in vivo molecular events and to evaluate their lifetimes (e.g., off rates). The methods used to suppress photobleaching/photoblinking in vitro are difficult to apply to living cells because of their toxicities. Here using 13 organic fluorophores we found that, by combining low concentrations of dissolved oxygen with a reducing-plus-oxidizing system, photobleaching/photoblinking could be strongly suppressed with only minor effects on cells, which enabled SMT for as long as 12,000 frames (~7 min at video rate, as compared to the general 10-s-order durations) with ~22-nm single-molecule localization precisions. SMT of integrins revealed that they underwent temporary (<80-s) immobilizations within the focal adhesion region, which were responsible for the mechanical linkage of the actin cytoskeleton to the extracellular matrix

    Simultaneous Time-Resolved Photoluminescence and X-Ray Absorption Fine Structure Operando Measurement during Ag Cluster Formation in Ag Zeolite X

    Get PDF
    We use operando X-ray absorption fine structure (XAFS) to analyze the relation between the properties of photoluminescence (PL) and the structures of Ag clusters and Ag ions. The Ag clusters are generated by evacuation in the cavity of Ag-type zeolite-X. The Ag clusters in the zeolite cavity collapse when exposed to the atmosphere. The results reported herein indicate that the collapsing Ag cluster plays an important role in generating strong PL bands and that Ag clusters might not be a direct species of PL. Results of XAFS analysis show that the Ag cluster formed in the zeolite cavity by evacuation can be tetrahedral with four atoms. By evacuation, 9 or 10 Ag tetrahedral are formed, two of which are expected to be responsible for strong PL. This result suggests that the Ag ion position after cluster collapse plays an important role in PL band generation and that Ag clusters are not direct luminescent species of PL
    corecore