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A computational model of internal 
representations of chemical 
gradients in environments for 
chemotaxis of Caenorhabditis 
elegans
Zu Soh   1, Kazuma Sakamoto2,3, Michiyo Suzuki4, Yuichi Iino5 & Toshio Tsuji1

The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and 
weathervane, which are closely related to the internal representation of chemical gradients parallel 
and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients 
must be calculated from the chemical information obtained at a single point, because the sensory 
neurons are located close to each other at the nose tip. To formulate the relationship between this 
sensory input and internal representations of the chemical gradient, this study proposes a simple 
computational model derived from the directional decomposition of the chemical concentration at 
the nose tip that can generate internal representations of the chemical gradient. The ability of the 
computational model was verified by using a chemotaxis simulator that can simulate the body motions 
of pirouette and weathervane, which confirmed that the computational model enables the conversion 
of the sensory input and head-bending angles into both types of gradients with high correlations of 
approximately r > 0.90 (p < 0.01) with the true gradients. In addition, the chemotaxis index of the 
model was 0.64, which is slightly higher than that in the actual animal (0.57). In addition, simulation 
using a connectome-based neural network model confirmed that the proposed computational model is 
implementable in the actual network structure.

The small roundworm Caenorhabditis elegans (C. elegans) represents one of the simplest model animals and is 
widely used to investigate neural computation. Its body consists of approximately 1000 cells, including 302 neu-
rons with a known connectome1, as well as various types of sensory neurons and motor neurons whose anatom-
ical structures were revealed in the 1970 s2,3, which allow the animal to sense external environments and select 
appropriate behavioural strategies for survival. Chemotaxis is one of the fundamental abilities of sensing chemical 
information and approaching a favourable environment based on the sensory information. C. elegans employs 
two types of behavioural strategies to perform chemotaxis. Pirouette is a strategy characterised by a series of 
behaviours starting with backward movement followed by sharp turns to change the travelling direction, and 
its occurrence depends on the chemical gradient parallel to the travelling direction of the body4. Weathervane 
represents a strategy of making a gradual curve toward a chemical peak, where the curving rate depends on the 
chemical gradient perpendicular to the travelling direction of the body5. If multiple sensory neurons are located 
spatially apart from each other, the gradients could be internally represented by the difference between their 
responses. However, the sensory neurons, for example, ASEL and ASER in the case of salt chemotaxis, are located 
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in close proximity at the nose tip. Therefore, the neural network is required to calculate and internally represent 
two types of gradients using the temporal responses of the sensory neurons.

The input to a pair of interneurons (AIYL and AIYR) may play this role, as suggested by a study by Kocabas 
et al.6, which found that the symmetric input to the neurons changes the frequency of pirouette and that the 
asymmetric input controls the curving rate. In addition, model studies have predicted neural processing related 
to the weathervane strategy. Ferrée et al.7 constructed a simple nonlinear neural-network model to enable weath-
ervane, and also extracted its computational rules using the impulse response of a linear neural network8. Morse 
et al.9 then verified the neural network model by navigating a robot to a light source. Izquierdo and Lockery10 
subsequently proposed a simplified network structure that could adjust the curving rate from sensory inputs, and 
found that the nonlinearity and self-feedback of motor neurons may serve as key mechanisms for this function. 
Furthermore, their group demonstrated that the neural network model derived from the connectome was also 
able to perform weathervane11. Xu et al.12 proposed a dynamic neural-network model and simulated attraction 
and avoidance behaviour; in addition, their group recently combined a body dynamics model and a neural net-
work model to enable chemotaxis13.

An understanding of chemotaxis acquired from the previous studies can be interpreted from the viewpoint 
of Marr’s level of analysis14. The behavioural analysis4,5 highlighted the problem at the computational level that 
the chemotaxis is closely related to the chemical gradients in the environments. The neural activity measure-
ments6 revealed the phenomena at the implementational level. The simulation approaches7–12 analysed the 
information-processing mechanism at the algorithmic and implementational levels. However, these approaches 
did not directly treat the algorithm to calculate chemical gradients in the environments, which was explicitly 
or implicitly assumed given in the computational level. In other words, the relationships between the sensory 
input at the nose tip of C. elegans and internal representations of the two types of chemical gradients in the envi-
ronments closely related to the observed strategies have not been formulated explicitly. Therefore, a gap exists 
between computational and implementational levels. Further, most previous models focused on revealing the 
mechanism of the weathervane and did not simulate the pirouette simultaneously.

This paper presents a simple and comprehensive computational model based on the motion of the animal 
involved in chemotaxis to bridge the gap of understanding between computational and implementational levels. 
The ability of the computational model to convert sensory inputs at the nose tip of C. elegans into internal rep-
resentations of the chemical gradient parallel and perpendicular to the travelling direction was verified using a 
chemotaxis simulator that can simulate the body motions of pirouette and weathervane. The chemotaxis perfor-
mance of the model was compared with previous experimental data5. For additional analysis of the implementa-
tional level, a connectome-based neural network model was constructed to test whether the computation could 
be implemented. Based on these results, we also discuss the relationship between the proposed computational 
model and the findings of the experimental6 and model11 studies.

Results
Chemical gradient with respect to the travelling direction derived from the NaCl concentra-
tion at the nose tip.  Behavioural experiments revealed that pirouette and weathervane strategies are closely 
related to the chemical gradients parallel and perpendicular to the travelling direction4,5, respectively, but how 
can these gradients related to the traveling direction be obtained by using only the information accessible by the 
animal? To answer this question, we focused on the fact that ASEL/R responds to the time derivative of NaCl 
concentration, and the time derivative can be approximated by a directional derivative (see S2 Appendix 2 for the 
detailed derivation process). The internal representation of the gradients can then be obtained by decomposing 
the directional derivative of NaCl concentration sensed at the nose tip into the directional components parallel 
and perpendicular to the travelling direction. Based on this idea, a computational model is derived by using the 
directional derivative and first mean value theorem for definite integrals. The derived computational model is 
expressed by equations (1) and (2), to describe the relationships between the chemical concentration sensed at the 
nose tip and the internal representations of the chemical gradient in the environments, respectively.
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where yp and yw are the internal representations of the gradients parallel and perpendicular to the travelling direc-
tion at the body centre, respectively, and q0 is the head-bending angle (cf. Materials and Methods; Multibody 
model); ap and aw are the reciprocals of the time constants that smooth the time derivative of the NaCl concentra-
tion sensed at the nose tip, and bp and bw are the gain constants to scale the inputs. The parameters in the model 
were adjusted and then set as follows: ap = 0.58, aw = 0.73, bp = 1.20, bw = 1.46. Because the derivation process 
involves several assumptions and approximations, we use p  and w  to express the accumulated approximation 
errors (see S2 Appendix 2).

The computational model can be interpreted as follows: Equation (1) works as a low-pass filter to eliminate the 
head-bending component, and equation (2) allows the comparison of the NaCl concentration between the ventral 
and dorsal sides using head-bending angles required to calculate the internal representation of the gradient per-
pendicular to the travelling direction (note that C. elegans lies on its side and navigates by dorsoventral motions).
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To test the computational model, a chemotaxis simulation involving both weathervane and pirouette strategies 
was performed by using a multibody model of C. elegans and the chemical environmental model.

Chemotaxis simulation using the multibody model.  To evaluate the computational model repre-
sented by equations (1) and (2), it is necessary to determine the true chemical concentration at the nose tip and 
responses of sensory neurons (ASEL and ASER) as well as internal representations of the gradient. However, it is 
difficult to retrieve this information using experimental approaches. Therefore, we constructed a chemotaxis 
simulator including a multibody model that can perform motions related to pirouette and weathervane and an 
environmental model that can simulate the NaCl distribution on the agar plate (cf. Materials and methods, 
Chemotaxis simulator). This method enables the verification of the computational model at the behavioural level 
without measurement of internal representations of the gradients in the actual neural network. Figure 1a shows 
travelling path examples of the body centre obtained by chemotaxis simulation using the chemotaxis simulator. 
The chemotaxis simulation was repeated 10 times. In this simulation, the internal representation of the gradients 
parallel and perpendicular to the travelling direction were calculated using the computational model (equations 
(1) and (2)), and the calculated values were used to control the motion of the body model to perform pirouette 
and weathervane. The average travelling speed of the model was 1.28 ± 0.09 mm/s, which is consistent with the 
experimental data5. Figure 1b compares the chemotaxis index between the body model and the animals. Based on 
the previously defined chemotaxis index5, it is calculated as (Tin − Tout)/Ttotal, where Tin is the time spent within 

π(2/ )  cm from any NaCl peak, Tout is time spent outside the area, and Ttotal is the total simulation and experi-
ment time, which is 1200 s in this case. The figure confirms a chemotaxis index of 0.64 ± 1.38 for the simulation. 
A comparison between the multibody model and the animal is presented in Supplemental Information S3 from 
the following aspects: the pirouette motion of the multibody model, a relationship between the curving rate and 
the gradient perpendicular to the traveling direction, a relationship between the bearing angles and the sharp turn 
angle, and evaluation of the error caused by converting body postures into the travelling path by using the multi-
body model.

The true values of the gradients parallel and perpendicular to the travelling direction, denoted as yp
G and yw

G, 
respectively, were then geometrically calculated based on the chemotaxis simulation path of the body centre, 
using equations (14)–(17), as described in Materials and Methods (Geometrical calculations of NaCl gradient), 
and compared with the internal representation of the gradients calculated using the computational model (equa-
tions (1) and (2)). Figure 2 shows comparison examples. The figure confirms a high correlation of r = 0.91 
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Figure 1.  Chemotaxis simulation using the multibody model. (a) Schematic of four examples of chemotaxis 
paths out of 10 simulations. The body model was placed at the centre of the field and chemotaxis simulation was 
performed for 1200 s. The resultant paths of the body centre are shown as solid dark lines. The small red circles 
with the solid line indicate the NaCl peaks and the circles with the broken line indicate the threshold distance 
used to calculate the chemotaxis index5. (b) Chemotaxis indices of the simulation and the animal. The error bar 
represents the standard deviation of 10 simulations.
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(p < 0.01) and r = 0.89 (p < 0.01) for the gradients parallel and perpendicular to the travelling direction, respec-
tively. The average correlations over 10 chemotaxis simulations were r = 0.90 ± 0.03 and r = 0.91 ± 0.02, and the 
average root mean square error (RMSE) values were 1.71 ± 0.32 × 10−6 mM/s and 0.14 ± 0.01 × 10−3 mM/cm, for 
the respective gradients.

The computational model was derived based on several assumptions and approximations regarding the inputs. 
We thus tested input (q0, dc(x0, t)/dt) dependency of the errors, as shown in Fig. 3. Here, the errors are defined as 

= −e y yp p
G

p and = −e y yw w
G

w, respectively, for the gradient parallel and perpendicular to the travelling direc-
tion. The figure confirms low correlations between the inputs and the errors. The average correlations of the 10 
simulation results are as follows:

•	 q0 vs ep: 0.01 ± 0.02
•	 dc(x0, t)/dt vs ep: 0.08 ± 0.05
•	 q0 vs ew: 0.01 ± 0.02
•	 dc(x0, t)/dt vs ew: 0.1 ± 0.06

*p < 0.001 for all correlations.
These results demonstrate low correlations between the errors and inputs, indicating almost no input 

dependency.

Figure 2.  Comparison of the internal representation of the gradients generated by the computational model 
and geometrically calculated gradient (true value). Black lines indicate the true gradients geometrically 
calculated from the chemotaxis path shown in the upper left side of Fig. 1. (a) NaCl concentrations at the nose 
tip of the multibody model and time differential of the concentration corresponding to dc/dt in equations (1) 
and (2). Spikes observed in the time differential of the NaCl concentration are caused by backward movement 
for the initiation of pirouette. (b) Comparison of the gradient parallel to the travelling direction. The correlation 
is r = 0.91 (p < 0.01) and RMSE is 1.78 × 10−6 mM/s. (c) Comparison of the gradient perpendicular to the 
travelling direction. The correlation is r = 0.89 (p < 0.01) and RMSE is 0.15 × 10−3 mM/cm.
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Generating internal representations of the chemical gradient based on the neural network 
structure of C. elegans.  The computational model indicates that generating the internal representation 
of NaCl gradients requires the time derivative of NaCl concentration at the nose tip and head-bending angle. 
We thus tested whether the connectome-based neural network exhibited the ability to generate the internal rep-
resentations from this information. A neural network model was constructed based on the neural connection 
structure derived from WormAtlas15 and neurons included in the model are were chosen based on those treated 
in Iino and Yoshida5. The simulation results were then compared with the computational model described by 
equations (1) and (2). The structure of the network model is shown in Fig. 4.

The model considers the response characteristics of sensory neurons ASEL and ASER using equations (20)–(21)  
(cf. Materials and Methods, Neural network model) based on measured data16. In addition, although previous 
studies4,6,7 suggested that the gradients are not directly coded in the neural network of C. elegans, to facilitate 
the evaluation of the implementability of the computational model in the neural network, we assumed that 
the interneurons explicitly represent these gradients. In this case, PVC(L/R) and AVB(L/R) interneurons were 
assumed to output the gradient parallel to the travelling direction because these neurons are responsible for con-
trolling forward motion17 and may inhibit backward motion followed by a sharp turn. In addition, the RIA(L/R) 
and AIZ(L/R) interneurons were assumed to output the gradient parallel to the travelling direction because these 
neurons control head bending1,18, which can generate turning bias. The model considers both chemical syn-
apse connections and gap junctions; these connection weight parameters were trained using back-propagation 
through a time algorithm19 modified to simultaneously train the parameters of both gap junctions and chemical 
synapses. The training datasets were generated using data from the chemotaxis simulation performed using the 
multibody model, wherein the inputs were the NaCl concentration sensed at the nose tip of the multibody model 
and the head-bending angles, and the teacher signals comprised true chemical gradients that were geometrically 
calculated from the path of the body centre obtained from the chemotaxis simulation.

Figure 5a,b show an example of comparison results between the output of the trained neural network model 
and the true chemical gradients, where the data in the time interval of 0–300 s are used for training the neural 
network and the data in the remaining 300 s are used to validate generality. The result confirmed the correlations 
of r = 0.94 (p < 0.01) and r = 0.99 (p < 0.01) for the gradients parallel and perpendicular to the travelling direction 

Head swing angle q0 [rad] Time derivation of NaCl concentration
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Figure 3.  Input dependency of error in gradients parallel and perpendicular to the traveling direction. Errors 
between the gradients calculated geometrically and those generated by the computational model are plotted 
against the inputs to the computational model. The errors and inputs are obtained from the chemotaxis 
simulation results shown in the upper left part of Fig. 1a.
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in the training interval, and r = 0.92 (p < 0.01) and r = 0.95 (p < 0.01) for the gradients parallel and perpendicular 
to the travelling direction in the validation interval, respectively. The average correlations over 10 chemotaxis 
simulation datasets were r = 0.91 ± 0.04 and r = 0.97 ± 0.03 for the gradients parallel and perpendicular to the 
travelling direction in the training interval, and r = 0.89 ± 0.04 and r = 0.91 ± 0.03 for the gradients parallel and 
perpendicular to the travelling direction in the validation interval, respectively. It should be noted that the gradi-
ents were normalised to a range of [−0.5, 0.5] considering the output range of the sigmoid function used in the 
neural network model.

Finally, we compared the computational model with the neural network model. For this comparison, the out-
puts of the computational model (equations (1) and (2)) were calculated for the 10 chemotaxis-simulation data-
sets using the previously described parameters. Figure 6a,b show examples of the outputs of the neural-network 
model and the computational model. Figure 6c shows the correlations between the outputs of the neural network 
model and those of the computational model where the average correlations were r = 0.93 ± 0.04 for both gradi-
ents parallel and perpendicular to the travelling direction and p < 0.01 for all simulation datasets.

Discussion
Relationship between NaCl concentration at the nose tip and the internal representations 
of chemical gradients.  This paper presents the computational model that can describe the relationships 
between the chemical concentration sensed at the nose tip of C. elegans and the internal representations of chem-
ical gradients closely related to pirouette and weathervane strategies, and tests if the computational model is 
implementable in the connectome-based neural network model. This analysis concept is based on Marr’s level of 
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Figure 4.  Structure of the neural network model regarding to chemotaxis in C. elegans.
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analysis where the computational model corresponds to the analysis on the computational level, and the neural 
network simulation corresponds to the analysis on the implementational level.

To verify the computational model, we constructed a chemotaxis simulator which includes the environment 
model expressing NaCl distribution and the multibody model of C. elegans. The results shown in Fig. 1 and 
the supplemental data indicate that the chemotaxis simulator has the ability to simulate the behaviour during 
chemotaxis, and is therefore applicable for testing equations (1) and (2). Figure 2 then confirms that equations 
(1) and (2) could convert the NaCl concentration sensed at the nose tip into the internal representation of the 
NaCl gradient parallel and perpendicular to the travelling direction. Equation (2) indicates that generating the 
internal representation of the gradient perpendicular to the travelling direction requires the head-bending angle. 
It is commonly considered that head bending is generated by a central pattern generator20 involving stretch recep-
tors21; thus, its information may be obtained through these neurons.

The derivation process (see S2 Appendix 2) shows that the directional decomposition of the time derivative 
of NaCl concentration requires cosine (symmetric) and sine (asymmetric) functions of the head-bending angle, 
respectively, for parallel and perpendicular to the travelling direction. Similar decomposition process could be 
performed in the pair of AIY neurons or their upstream neurons because the results of an experimental study6 
indicated that the symmetric input of the pair of AIY neurons controls the pirouette frequency and the asymmet-
ric input controls the gradual turn (weathervane).

In addition, one of the findings of the model study by Izquierdo & Beer11 indicated that the asymmetrical 
response characteristics of the ventral and dorsal motor neurons are required to perform gradual turns (weath-
ervane). That is, the response characteristic of either side of the motor neuron would be shifted to the region of 
lower sensitivity and the other side to that of higher sensitivity, by the sensory input, so that the motor neurons 
generate a biased sinusoidal wave to regulate body motion. From the computational model (equation (2)), it can 
be interpreted that the motor neurons perform the directional decomposition, and the gradient parallel to the 
travelling direction is coded in the motion of the animal.

As described above, the proposed computational model suggests that both findings obtained from the obser-
vation of AIY neurons and motor neurons in the simulation could be explained by directional decomposition. 
From the viewpoint of Marr’s level of analysis, the computational model can bridge the gap between the problem 
defined in the computational level and implementational level.

Generating internal representations of chemical gradients based on the neural network struc-
ture of C. elegans.  Figure 5 confirms that the training algorithm successfully adjusted the parameters of 
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the neural network model and that it could internally represent gradients with respect to the travelling direction 
using the NaCl concentration sensed at the nose tip and the head-bending angle. High correlations between the 
respective gradients generated by the computational model, neural network model, and geometrical calculation 
(shown in Fig. 6) indicate that the computational model can be implemented in the connectome-based neural 
network.

Limitation.  In the neural network model, AVB and PVC were assumed to output the gradient parallel to the 
travelling direction. However, in the measurement experiments, activities in these neurons were observed despite 
the absence of a gradient22, which indicates that AVB and PVC are redundant in the calculation of the gradients. 
We confirmed this redundancy by excluding AVB and PVC from the connectome-based neural network model, 
setting AIY as the output neuron, and readjusting the parameters. Accordingly, AIY generated the gradient paral-
lel to the travelling direction with a correlation of 0.98 (p < 0.001), indicating that the computational model could 
be implemented with various parameter sets. This redundancy in the parameter space limits the analysis of the 
contribution of the respective neuron to chemotaxis.

The parameters of the multibody model and motions such as body forms and reversal durations are chosen 
such that the body model can approximate the motions of the actual animal as close as possible (see Supplemental 
Information S3). Although the approximation error affects the analysis results, the error of generated gradients 
(see Fig. 2) caused by the multibody model may be partial (see Fig. S5 in Supplemental Information S3). The 
modelling error, however, is inevitable in a process to approximate the motion of C. elegans. To reduce the mod-
elling error, merging the simulation and experimental approaches can be a candidate solution for future research. 
In addition, the motion of the multibody model was given by a sinusoidal function, as shown in equations (5) and 
(6) in Material and Methods: Chemotaxis simulator. Thus, the model ignores small random wriggling motions 
of the nose tip that can be observed in the actual animal. As the sensory neurons are located at the nose tip, this 
motion can affect the sensory inputs. However, this evaluation is not performed in this study.
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Figure 6.  Comparison among the true gradients, the outputs of the neural network model, and the outputs 
of the computational model. (a) Shows the comparison of the gradients parallel to the travelling direction. 
(b) Shows the comparison of the gradients perpendicular to the travelling direction. (c) Shows the average 
correlation between the neural network model and the computational model. The average correlations were 
calculated using 10 chemotaxis simulation results partially shown in Fig. 1. The error bars represent the 
standard deviations.
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Conclusion
In this study, a simple and comprehensive computational model was derived to convert the response of a sin-
gle sensory input into two types of internal representations of the NaCl gradient parallel and perpendicular to 
the travelling direction and enabled simultaneous simulation of the pirouette and weathervane strategies. The 
derived computational model suggests that internal representations of the gradients can be generated by combin-
ing head-bending angles and sensory input from ASEL/R neurons. It could also be used to interpret the functions 
of AIY neurons and motor neurons, respectively, identified in previous experimental6 and simulation studies11, 
and thus can bridge the gap between the chemotaxis problems at the computational and implementational levels.

The connectome-based neural network model included in the chemotaxis simulator demonstrated that the 
computational model could be implemented in it, although the coding manner of the chemical gradient might 
differ from that of the actual animals. The connectome-based neural network model may allow further analysis 
of the functions of respective neurons by introducing the biological constrictions and measured neural activities 
and by simulating ablation experiments.

Materials and Methods
To evaluate the derived computational model [equations (1) and (2)], we developed a chemotaxis simulator 
including the multibody and environmental models. The body model can perform both weathervane and pir-
ouette motion. The NaCl chemical gradients parallel and perpendicular to the travelling direction in an envi-
ronment, which are called a true gradient in this paper, were calculated from the simulated body centre path. To 
test the implementability of the proposed computational model under actual neural structure representations, 
a connectome-based neural network model was constructed. All simulations described in this study were per-
formed using MATLAB 2013. Model parameters are given in S1 Appendix 1. The following text explains each part 
of the chemotaxis simulator, simulation method, and neural network model.

Chemotaxis simulator: Multibody model.  C. elegans body was approximated using a multibody model, 
as shown in Fig. 7, defined by the following Newton-Euler equations based on a previous study23:

∑ρ+



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where x = [xi, yi]T represents the i-th body centroid position, xg = [xg, yg]T represents the body centre position, 
q = [q0, q1, …, qL−1]T represents the angles between adjacent modules, I(q) and Ig(q) represent the inertia matrix, 

( )h q, qd
dt

 and ( )h q, qd
dtg  are centrifugal and Coriolis force terms, g(q) and gg(q) are gravity force terms, ρ = [ρ0, ρ1, 

…, ρL−1]T is the driving torque generated from the motors, Fj = [FT,j, FN,j] is the friction vector between the floor 
and the j-th body, and Jj is the Jacobian matrix. Please note that we omit the explicit notation of time dependence 
of the variables for simplification, but all variables depend on time in equations (3) and (4). The parameters 
related to inertia, centrifugal, Coriolis, and gravity forces are determined based on animal size and weight (Tables 
in S1 Appendix 1). The friction forces were determined based on the average velocity of the animal on the chem-
otaxis plate (0.12 mm/s)5.

Chemotaxis simulator: implementing pirouette and weathervane.  Body model motion is con-
trolled by a sinusoidal function determining each i-th joint angle qi(t).
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(a) Body of C. elegans

(b) Multibody model
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xi   : Position vector of the i-th module,
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Figure 7.  Body of C. elegans and the multibody model.
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ω φ κ= − +q t q t t t( ) sin( ( )) ( ), (5)i iMax

φ πψ= − −t i( ) 2 ( 1), (6)i

where qMax is the maximum joint bending angle, ω determines the angular velocity of bending, φi(t) determines 
the wavelength of the animal body as well as switching between forward and backward motion, and ψ (in rad) 
is determined by the measured body wavelength24. The bias parameter κ(t) = κw(t) + κR(t) is determined by the 
weathervane turning rate κw(t) and random walk κR(t). Pirouette and weathervane were implemented by chang-
ing φi(t) and κ(t) as follows:

Weathervane.

κ = −t C d t( ) ( ) (7)w w s

where ds(t) (in mM/mm) represents the gradient perpendicular to the traveling direction and Cw is derived from 
the measured weathervane curvature5.

Pirouette.  Pirouette frequency fp(t) (in events/s) is given by the following equation5:

=
.

. +
+ .f t

d t
( ) 0 023

0 4 exp(140 ( ))
0 0033

(8)p
t

where dt(t) (in mM/s) is the gradient parallel to the travelling direction. A uniform random number R(t) ∈ [0, 1] 
is generated every sampling time and pirouette is initiated if R(t) < fp(t).

The pirouette starts with backward motion by switching the phase φi(t) using the following equation:

φ π ω φ= + −t T T( ) 2 ( ) (9)i p i p0 0

where Tp0 is the pirouette initiation time. The backward motion lasts for Tb = 6.0 s because measurement data 
indicate that most sharp turns occur after a long reversal with around three head-bending cycles25 and their prob-
ability is approximately 90% after 6.0 s of backward motion26. When the backward motion is finished, equation 
(9) is applied again to switch back to forward motion.

A sharp turn is then initiated after the backward motion using the following equation:
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where TΩ0 = Tp0 + Tb is the sharp turn initiation time, TΩ1 = TΩ0 + Tp1, TΩ2 = TΩ1 + Tp2, and TΩE = TΩ2 + Tp3 are 
duration parameters for linearly changing the φi(t), and Cp is the maximum phase delay. The total sharp turn 
duration is set to TΩE − TΩ0 = 3.18 s, and Cp was adjusted to generate turns larger than 1.75 rad based on defini-
tions from a previous study5. Temporal changes in ϕi(t) allow the body shape to change from the S shape to the Ω 
shape and back, as illustrated in Fig. S2 in Supplemental Information S3.

Random walk.  The random walk was introduced based on measured curvature in the absence of a chemical 
gradient as in the following equations:

κ = N C(0, ) (11)T r

κ κ
κ κ

= − Δ +
−
Δ

−t t t
T

( ) ( ) (12)R R
T T 1

Based on simulations performed by Iino and Yoshida5, a random curvature parameter bT was chosen every 
ΔT = 12 s and linearly altered for every sampling time Δt (in s).

Chemotaxis simulator: Environmental model.  The environmental model and its parameters were derived from 
a previous study5. NaCl concentration at an arbitrary position x can be calculated by solving Fick’s equation as 
follows:
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where N0 is the NaCl solution concentration, D is the NaCl diffusion coefficient, E is the agar plate thickness, and 
xk is the coordinate of the k-th NaCl point.
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Chemotaxis simulations were performed after 3600 s of NaCl diffusion, with each being performed for 1200 s 
and repeated 10 times using the multibody model. Notably, NaCl continued to diffuse during the simulation 
based on equation (13).

Chemotaxis simulator: Simulation procedure and gradient calculation.  Simulation.  Chemotaxis 
simulation was performed according to the following procedure, wherein the time step was set to 0.01 s.

	 1.	 The multibody model was placed in the environmental model centre [xg=(xg, yg)=(0, 0)].
	 2.	 The multibody model posture was calculated by using equations (5) and (6).
	 3.	 The dynamics were calculated by solving equations (3) and (4) and used to update the current position xg.
	 4.	 NaCl concentration at the nose tip (x0) was calculated by using equation (13).
	 5.	 Nose tip NaCl concentration was converted into the internal representation of the gradients parallel and 

perpendicular to the travelling direction by using the proposed computational model (equations (1) and (2)).
	 6.	 Pirouette initiation was judged by using equation (8)
	 7.	 Pirouette was simulated by using equations (9) and (10); otherwise, weathervane was simulated by using 

equation (7) and random walk by using equations (11) and (12).
	 8.	 Steps 2–7 were iteratively implemented for each succeeding time step until the total simulation time of 

1200 s was attained.

Geometrical calculation of NaCl gradient.  Using the environmental model, the true gradient parallel to 
the travelling direction yp

g  was geometrically calculated as follows:
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where xg(t) − xg(t − Δt) is the body centre travelling direction and δ is a small displacement; thus Δxv(t) and 
Δxd(t) are the vectors perpendicular to the travelling direction.

Neural network model.  The neural network model shown in Fig. 4 was defined based on the actual connec-
tion structure derived from WormAtlas15 considering both synaptic connections and gap junction, and neurons 
included in the model were derived from Iino and Yoshida5. The model receives inputs of the head-bending 
angles and NaCl concentration at the nose tip of the multibody model from RIV(L/R) and amphid sensory neu-
rons ASE(L/R), respectively. The ASEL and ASER responses are determined from the previous experimental 
data16 and sent to the interneurons in both amphid and nerve ring. To facilitate the evaluation of implementability 
of the computational model on the neural network, we assumed that the interneurons could directly generate 
the gradients, although previous studies6,10,11 have suggested that these gradients are not directly coded in the C. 
elegans neural network. In this case, PVC(L/R) and AVB(L/R) interneurons were assumed to output the gradient 
parallel to the travelling direction because these neurons are responsible for controlling forward motion17 and 
may inhibit backward motion followed by a sharp turn. Additionally, interneurons RIA(L/R) and AIZ(L/R) were 
assumed to output the gradient perpendicular to the travelling direction because these neurons control head 
bending1,13, which can generate turning bias. The following equations give a mathematical definition of the neural 
network model:

The dynamic characteristic of a neuron is given as follows:
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U t
u t

( 1) 1
1 exp( ( 1))

,
(19)i

i

where ui(t) corresponds to the electrical current to the i-th neuron, Ui(t) corresponds to the membrane potential, 
Ts is the sampling time, τi is the time constant caused by leakage current, wij, and wij

d are the chemical synapse 
connection strengths from the j-th to the i-th neuron, sij = sji is the conductance of a gap junction, n is the total 
number of neurons, and m is the total input number. Additionally, zj(t) = uj(t) when j ≤ n, and zj(t) = Ij−n(t) when 
n < j ≤ n + m where Ij(t) is the external input including NaCl concentration and head-bending angle q0(t).

ASER and ASEL neurons were modelled based on the experimental data16 as follows:
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where I1(t + 1) and I2(t + 1) represent inputs to ASEL and ASER neurons, respectively. dc/dt is the NaCl concen-
tration time derivative at the nose tip. The parameters + + − −a b a b a b, , , , ,L L R R R R  are adjusted to fit the response 
peaks of ASEL and ASER neurons. Figure 8 shows the fitting results, which confirms that the model could gener-
ate a response similar to the experimental data16.

Adjustments of chemical synapse connections wij and gap junctions sij were performed using back-propagation 
through a time algorithm, which uses the chain-rule of partial differential on the following evaluation function:

∑ ∑ μ= −
= =

H U t d t1
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(22)t
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i

n

i i i
1 1

2

where μi = 1 if index i corresponds to the neuron that outputs a gradient either parallel or perpendicular to the 
traveling direction; otherwise μi = 0, di(t) is the target gradient that is desired to be outputted from the corre-
sponding neuron. The chemical gradient is normalised to produce di(t) by using the following equations as the 
output values of a neuron model are in the range of [0, 1].
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where cζ is a gradient either parallel or perpendicular to the traveling direction. The parameters wij, sij, τi are then 
iteratively updated based on the partial differential of H by the following equations:

Figure 8.  Measured peak responses and the input to the model. (a) Shows the input to ASEL. (b) Shows the 
input to ASER.



www.nature.com/scientificreports/

13SCIENTIfIC REPOrTS |         (2018) 8:17190  | DOI:10.1038/s41598-018-35157-1

η← −
∂
∂

w w H
w

,
(24)

ij ij w
ij

η← −





∂
∂

+
∂
∂






s s H

s
H
s

,
(25)

ij ij g
ij ji

τ
τ η

τ
τ

τ
←









−
∂
∂

>

≤

τ
H , 0

0 0
,

(26)
i

i
i

i

i

where ηw, ηg, ητ represent the learning rate. As shown in the above equations, the gap junction is constrained to 
sij = sji, and the time constant is constrained to τi > 0.
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