130 research outputs found

    Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations

    Full text link
    We present results from general-relativistic (GR) three-dimensional (3D) core-collapse simulations with approximate neutrino transport for three non-rotating progenitors (11.2, 15, and 40 Msun) using different nuclear equations of state (EOSs). We find that the combination of progenitor's higher compactness at bounce and the use of softer EOS leads to stronger activity of the standing accretion shock instability (SASI). We confirm previous predications that the SASI produces characteristic time modulations both in neutrino and gravitational-wave (GW) signals. By performing a correlation analysis of the SASI-modulated neutrino and GW signals, we find that the correlation becomes highest when we take into account the time-delay effect due to the advection of material from the neutrino sphere to the proto-neutron star core surface. Our results suggest that the correlation of the neutrino and GW signals, if detected, would provide a new signature of the vigorous SASI activity in the supernova core, which can be hardly seen if neutrino-convection dominates over the SASI.Comment: 24 pages, 10 figures, Accepted for publication in Ap

    Coherent Network Analysis of Gravitational Waves from Three-Dimensional Core-Collapse Supernova Models

    Full text link
    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We use the {\tt RIDGE} pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from rotating core-collapse, bounce and the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance extends up to \sim 18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the non-axisymmetric instabilities. The horizon distances extend maximally up to \sim 40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best studied GW signals due to rotating core-collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. Particularly the quasi-periodic signals due to the non-axisymmetric instabilities and the detectability should deserve further investigation to elucidate the inner-working of the rapidly rotating CCSNe.Comment: PRD in pres

    Linear response theory in the continuum for deformed nuclei: Green's function vs. time-dependent Hartree-Fock with the absorbing-boundary condition

    Get PDF
    The continuum random-phase approximation is extended to the one applicable to deformed nuclei. We propose two different approaches. One is based on the use of the three dimensional (3D) Green's function and the other is the small-amplitude TDHF with the absorbing-boundary condition. Both methods are based on the 3D Cartesian grid representation and applicable to systems without any symmetry on nuclear shape. The accuracy and identity of these two methods are examined with the BKN interaction. Using the full Skyrme energy functional in the small-amplitude TDHF approach, we study the isovector giant dipole states in the continuum for O-16 and for even-even Be isotopes.Comment: 15 pages, 8 figure

    Cross-Correlation between UHECR Arrival Distribution and Large-Scale Structure

    Full text link
    We investigate correlation between the arrival directions of ultra-high-energy cosmic rays (UHECRs) and the large-scale structure (LSS) of the Universe by using statistical quantities which can find the angular scale of the correlation. The Infrared Astronomical Satellite Point Source Redshift Survey (IRAS PSCz) catalog of galaxies is adopted for LSS. We find a positive correlation of the highest energy events detected by the Pierre Auger Observatory (PAO) with the IRAS galaxies inside z=0.018z=0.018 within the angular scale of 15\sim 15^{\circ}. This positive correlation observed in the southern sky implies that a significant fraction of the highest energy events comes from nearby extragalactic objects. We also analyze the data of the Akeno Giant Air Shower Array (AGASA) which observed the northern hemisphere, but the obvious signals of positive correlation with the galaxy distribution are not found. Since the exposure of the AGASA is smaller than the PAO, the cross-correlation in the northern sky should be tested using a larger number of events detected in the future. We also discuss the correlation using the all-sky combined data sets of both the PAO and AGASA, and find a significant correlation within 8\sim 8^{\circ}. These angular scales can constrain several models of intergalactic magnetic field. These cross-correlation signals can be well reproduced by a source model in which the distribution of UHECR sources is related to the IRAS galaxies.Comment: 21 pages,7 figure

    E22Δ Mutation in Amyloid β-Protein Promotes β-Sheet Transformation, Radical Production, and Synaptotoxicity, But Not Neurotoxicity

    Get PDF
    Oligomers of 40- or 42-mer amyloid β-protein (Aβ40, Aβ42) cause cognitive decline and synaptic dysfunction in Alzheimer's disease. We proposed the importance of a turn at Glu22 and Asp23 of Aβ42 to induce its neurotoxicity through the formation of radicals. Recently, a novel deletion mutant at Glu22 (E22Δ) of Aβ42 was reported to accelerate oligomerization and synaptotoxicity. To investigate this mechanism, the effects of the E22Δ mutation in Aβ42 and Aβ40 on the transformation of β-sheets, radical production, and neurotoxicity were examined. Both mutants promoted β-sheet transformation and the formation of radicals, while their neurotoxicity was negative. In contrast, E22P-Aβ42 with a turn at Glu22 and Asp23 exhibited potent neurotoxicity along with the ability to form radicals and potent synaptotoxicity. These data suggest that conformational change in E22Δ-Aβ is similar to that in E22P-Aβ42 but not the same, since E22Δ-Aβ42 exhibited no cytotoxicity, unlike E22P-Aβ42 and wild-type Aβ42
    corecore