63 research outputs found

    Newly Identified CYP2C93 Is a Functional Enzyme in Rhesus Monkey, but Not in Cynomolgus Monkey

    Get PDF
    Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84–86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1), an aberrantly spliced transcript (SV2) lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del). These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys), although its relative contribution to drug metabolism has yet to be validated

    Experimental rat model for cervical compressive myelopathy

    Get PDF
    Previously, a rat model of chronic compressive myelopathy that uses a water-absorbing polymer inserted under a spinal lamina was reported. However, the best size and coefficient of expansion of the polymer sheet have not yet been established. The aim of the present study was to optimize these properties in an ideal rat model of cervical compressive myelopathy. Thirty rats were used in this study. A sheet of water-absorbing polymer was inserted under the cervical laminae. Rats were divided randomly into five experimental groups by the expansion rate (350 or 200%) and thickness (0.5 or 0.7 mm) and the control. After the surgery, the severity of paralysis was evaluated for 12 weeks. At 12 weeks after the surgery, cresyl violet staining was performed to assess the number of motor neurons in the anterior horn at the C4/C5 segment and Luxol Fast Blue staining was performed to assess demyelination in the corticospinal tract at the C7 segment. ‘Slow-progressive’ paralysis appeared at 4–8 weeks postoperatively in rat models using sheets with 200% expansion. By contrast, only temporary paralysis was observed in rat models using sheets with 350% expansion. A loss of motor neurons in the anterior horn was observed in all groups, except for the control. Demyelination in the corticospinal tract was observed in rat models using sheets with 200% expansion, but not rat models using sheets with 350% expansion. A polymer sheet that expands its volume by 200% is an ideal material for rat models of cervical compressive myelopathy

    Exploration of Spinal Cord Aging–Related Proteins Using a Proteomics Approach

    Get PDF
    How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging–related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes

    Cervical restenosis caused by progressive ossification of the posterior longitudinal ligament in patients following laminoplasty: Two case reports

    Get PDF
    We report two cases of restenosis caused by the progression of thickness of ossification of the posterior longitudinal ligament (OPLL) seven and more years after laminoplasty, resulting in neurological deterioration needed for revision anterior decompressive surgeries. Neurological recovery after revision anterior excision of OPLL was poor. In both cases, the patients had progressive OPLL, with a non-ossified segment of the ossification foci, in common. After laminoplasty, they also both exhibited osseous fusion of the elevated laminae, but there was discontinuity at the interlaminar space at the peak level of OPLL. Discontinuity of the osseous fusion in the elevated laminae might cause mechanical stress increases at the non-ossified segment of the OPLL and could lead to the progression of OPLL. The present cases showed that long-term progression of OPLL can induce neurological deterioration even after sufficient posterior decompression by laminoplasty. Therefore, when considering risk factors that may be predictive of the progression of OPLL after laminoplasty, it is important to perform strict follow-up examination to check for progression to reduce the risk of myelopathy symptoms that are indicative of neurological deterioration

    Drag Reduction on the Basis of the Area Rule of the Small-scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology

    Get PDF
    A small-scale supersonic flight experiment vehicle (OWASHI) is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high speed atmospheric flights which are essential to next-generation aerospace transportation systems. The second-generation configuration M2011 of the vehicle with a single Air Turbo Ramjet Gas-generator-cycle (ATR-GG) engine has been proposed. Its transonic thrust margin has been predicted to be insufficient, therefore drag reduction in the transonic regime is quite crucial for attainability of supersonic flights. In this study, we propose configuration modifications for drag reduction on the basis of the so-called area rule, and assess their effects through wave drag analysis, wind tunnel tests, and CFD analysis. As a result, the area-rule-based configurations have less drag than the baseline configuration M2011. However, the effects of the proposed bottleneck on the fuselage below the main wing are smaller than predicted. It would be caused by the drag due to separation and shocks around the bottleneck. It is necessary to redesign the area-rule-based bottleneck to be smoother

    Glucosamine induces autophagy via an mTOR-independent pathway.

    Get PDF
    Autophagy is a cellular process that nonspecifically degrades cytosolic components and is involved in many cellular responses. We found that amino sugars with a free amino group such as glucosamine, galactosamine and mannosamine induced autophagy via an mTOR-independent pathway. Glucosamine-induced autophagy at concentrations of at least 500 microM to over 40 mM. In the presence of 40 mM glucosamine, autophagy induction was initiated at 6h and reached a plateau at 36 h. Glucosamine-induced autophagy could remove accumulated ubiquitin-conjugated proteins as well as 79-glutamine repeats. Therefore, orally administered glucosamine could contribute to the prevention of neurodegenerative diseases and promotion of antiaging effects
    corecore