8 research outputs found

    Rising stars in energy research: 2022

    Get PDF
    Recognising the future leaders of Energy Research is fundamental to safeguarding tomorrow's driving force in innovation. This collection will showcase the high-quality work of internationally recognized researchers in the early stages of their careers. We aim to highlight research by leading scientists of the future across the entire breadth of Energy Research, and present advances in theory, experiment and methodology with applications to compelling problems

    Sustainability Enhancement of Fossil-Fueled Power Plants by Optimal Design and Operation of Membrane-Based CO<sub>2</sub> Capture Process

    No full text
    Fossil-fueled power plants are a major source of carbon dioxide (CO2) emission and the membrane process is a promising technology for CO2 removal and mitigation. This study aims to develop optimal membrane-based carbon capture systems to enhance the sustainability of fossil-fuel power plants by reducing their energy consumption and operating costs. The multi-stage membrane process is numerically modeled using Aspen Custom Modeler based on the solution-diffusion mechanism and then the effects of important operating and design parameters are investigated. Multi-objective process optimization is then carried out by linking Aspen Plus with MATLAB and using an evolutionary technique to determine optimal operating and design conditions. The results show that, as the CO2 concentration in the feed gas increases, the CO2 capture cost significantly decreases and CO2 removal is enhanced, although the process energy demand slightly increases. The best possible trade-offs between objective functions are reported and analyzed, which confirm the considerable potential for improving the sustainability of the process. The CO2 capture cost and energy penalty of the process is as low as 13.1 $/tCO2 and 10% at optimal design and operating conditions. This study provides valuable insight into membrane separation and can be used by decision-makers for the sustainable improvement of fossil-fueled power plants

    Sustainability Enhancement of Fossil-Fueled Power Plants by Optimal Design and Operation of Membrane-Based CO2 Capture Process

    No full text
    Fossil-fueled power plants are a major source of carbon dioxide (CO2) emission and the membrane process is a promising technology for CO2 removal and mitigation. This study aims to develop optimal membrane-based carbon capture systems to enhance the sustainability of fossil-fuel power plants by reducing their energy consumption and operating costs. The multi-stage membrane process is numerically modeled using Aspen Custom Modeler based on the solution-diffusion mechanism and then the effects of important operating and design parameters are investigated. Multi-objective process optimization is then carried out by linking Aspen Plus with MATLAB and using an evolutionary technique to determine optimal operating and design conditions. The results show that, as the CO2 concentration in the feed gas increases, the CO2 capture cost significantly decreases and CO2 removal is enhanced, although the process energy demand slightly increases. The best possible trade-offs between objective functions are reported and analyzed, which confirm the considerable potential for improving the sustainability of the process. The CO2 capture cost and energy penalty of the process is as low as 13.1 $/tCO2 and 10% at optimal design and operating conditions. This study provides valuable insight into membrane separation and can be used by decision-makers for the sustainable improvement of fossil-fueled power plants

    Modeling and control of a proton exchange membrane fuel cell with the air compressor according to requested electrical current

    No full text
    The aim of this paper is to design and investigate the dynamic behavior of a PEM fuel cell system. Dynamic analysis of a PEM fuel cell system has been done in Matlab\Simulink software according to electrical current that has been applied from hybrid system. In addition, dynamical fuel cell system has been explained according to oriented control that is started from air injection compressor model. Also hydrogen valve actuator has been controlled according to the compressor model. The results of the fuel cell dynamic model as well as the applied compressor model are fully validated based on the available results in the open literature. Finally, the effects of several operating parameters of the fuel cell system such as anode and cathode pressures, cell voltage, compressor voltage, compressor mass flow rate variation with respect to inlet pressure ratio, net and stack powers on the dynamic behavior of the hybrid system are investigated. The results show that the model can predict the dynamic behavior of the fuel cell system accurately and it can be used directly for any control purposes

    Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and Industrial Waste Gases

    No full text
    Methanol is expected to be a possible solution for reducing global greenhouse gas emissions and minimizing the dependency on fossil fuels. This paper presents a systematic approach of methanol (MeOH) production from industrial waste gases including flue gas (FG) and coke oven gas (COG) that are considered an important threat to the environment. The impact of process parameters, including dimensional parameters (length, diameter, and number of tubes) and operational parameters (reactor temperature, pressure, and thermal fluid temperature) over the MeOH synthesis, are investigated by Aspen Plus. Firstly, the synthesis process is designed and optimized using syngas (SG) as a feed material. Secondly, by replacing the feed material with FG and COG, methanol production variability is investigated and demonstrated for the same optimized process. Afterward, an efficient heat exchange network system is developed for all three different processes using Aspen Energy Analyzer. The optimized dimensional parameters of the MeOH synthesis reactor are determined to be a length of 12 m, a diameter of 0.06 m, and 5000 tubes for achieving a conversion rate of 75%. Meanwhile, the optimized operational parameters are identified as a reactor temperature of 209 °C, reactor pressure of 70 bar, and thermal fluid temperature of 196 °C. Furthermore, the influence of the stoichiometric number (SN) on the process was observed with higher SN values resulting in increased hydrogen (H2) concentration and an improved forward reaction of MeOH synthesis, leading to higher conversion rates. The findings and insights gained from this study can serve further improvements and advancements in MeOH synthesis processes
    corecore