12 research outputs found

    Motion Control of Redundant Robots with Generalised Inequality Constraints

    Get PDF
    We present an improved version of the Saturation in the Null Space (SNS) algorithm for redundancy resolution at the velocity level. In addition to hard bounds on joint space motion, we consider also Cartesian box constraints that cannot be violated at any time. The modified algorithm combines all bounds into a single augmented generalised vector and gives equal, highest priority to all inequality constraints. When needed, feasibility of the original task is enforced by the SNS task scaling procedure. Simulation results are reported for a 6R planar robot

    Low Voltage Electrohydraulic Actuators for Untethered Robotics

    Full text link
    Rigid robots can be precise in repetitive tasks but struggle in unstructured environments. Nature's versatility in such environments inspires researchers to develop biomimetic robots that incorporate compliant and contracting artificial muscles. Among the recently proposed artificial muscle technologies, electrohydraulic actuators are promising since they offer comparable performance to mammalian muscles in terms of speed and power density. However, they require high driving voltages and have safety concerns due to exposed electrodes. These high voltages lead to either bulky or inefficient driving electronics that make untethered, high-degree-of-freedom bio-inspired robots difficult to realize. Here, we present low voltage electrohydraulic actuators (LEAs) that match mammalian skeletal muscles in average power density (50.5 W/kg) and peak strain rate (971 percent/s) at a driving voltage of just 1100 V. This driving voltage is approx. 5 - 7 times lower compared to other electrohydraulic actuators using paraelectric dielectrics. Furthermore, LEAs are safe to touch, waterproof, and self-clearing, which makes them easy to implement in wearables and robotics. We characterize, model, and physically validate key performance metrics of the actuator and compare its performance to state-of-the-art electrohydraulic designs. Finally, we demonstrate the utility of our actuators on two muscle-based electrohydraulic robots: an untethered soft robotic swimmer and a robotic gripper. We foresee that LEAs can become a key building block for future highly-biomimetic untethered robots and wearables with many independent artificial muscles such as biomimetic hands, faces, or exoskeletons.Comment: Stephan-Daniel Gravert and Elia Varini contributed equally to this wor

    Kinematic control of redundant robots with online handling of variable generalized hard constraints

    Get PDF
    We present a generalized version of the Saturation in the Null Space (SNS) algorithm for the task control of redundant robots when hard inequality constraints are simultaneously present both in the joint and in the Cartesian space. These hard bounds should never be violated, are treated equally and in a unified way by the algorithm, and may also be varied, inserted or deleted online. When a joint/Cartesian bound saturates, the robot redundancy is exploited to continue fulfilling the primary task. If no feasible solution exists, an optimal scaling procedure is applied to enforce directional consistency with the original task. Simulation and experimental results on different robotic systems demonstrate the efficiency of the approach. The proposed algorithm can be viewed as a generic platform that is easily applicable to any robotic application in which robots operate in an unstructured environment and online handling of joint and Cartesian constraints is critical.Comment: 8 pages, 10 figures. This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022 with RA-L option) for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline Data in the Real World

    Full text link
    Experimentation on real robots is demanding in terms of time and costs. For this reason, a large part of the reinforcement learning (RL) community uses simulators to develop and benchmark algorithms. However, insights gained in simulation do not necessarily translate to real robots, in particular for tasks involving complex interactions with the environment. The Real Robot Challenge 2022 therefore served as a bridge between the RL and robotics communities by allowing participants to experiment remotely with a real robot - as easily as in simulation. In the last years, offline reinforcement learning has matured into a promising paradigm for learning from pre-collected datasets, alleviating the reliance on expensive online interactions. We therefore asked the participants to learn two dexterous manipulation tasks involving pushing, grasping, and in-hand orientation from provided real-robot datasets. An extensive software documentation and an initial stage based on a simulation of the real set-up made the competition particularly accessible. By giving each team plenty of access budget to evaluate their offline-learned policies on a cluster of seven identical real TriFinger platforms, we organized an exciting competition for machine learners and roboticists alike. In this work we state the rules of the competition, present the methods used by the winning teams and compare their results with a benchmark of state-of-the-art offline RL algorithms on the challenge datasets

    Dynamic Task Space Control Enables Soft Manipulators to Perform Real‐World Tasks

    No full text
    Dynamic motions are a key feature of robotic arms, enabling them to perform tasks quickly and efficiently. A majority of real‐world soft robots rely on a quasistatic control approach, without taking dynamic characteristics into consideration. As a result, robots with this restriction move slowly and are not able to adequately deal with forces, such as handling unexpected perturbations or manipulating objects. A dynamic approach to control and modeling would allow soft robots to move faster and handle external forces more efficiently. In previous studies, different aspects of modeling, dynamic control, and physical implementation have been examined separately, while their combination has yet to be thoroughly investigated. Herein, the accuracy of the dynamic model of the multisegment continuum robot is improved by adding new elements that include variable stiffness and actuation behavior. Then, this improved model is integrated with state‐of‐the‐art system identification and dynamic task space control and experiments are performed to validate this combination on a real‐world manipulator. As a means of encouraging future research on dynamic control for soft robotic manipulators, the source code is made available for modeling, control, and system identification, along with the recipes for fabricating the manipulator

    Dynamic Task Space Control Enables Soft Manipulators to Perform Real-World Tasks

    No full text
    Dynamic motions are a key feature of robotic arms, enabling them to perform tasks quickly and efficiently. A majority of real-world soft robots rely on a quasistatic control approach, without taking dynamic characteristics into consideration. As a result, robots with this restriction move slowly and are not able to adequately deal with forces, such as handling unexpected perturbations or manipulating objects. A dynamic approach to control and modeling would allow soft robots to move faster and handle external forces more efficiently. In previous studies, different aspects of modeling, dynamic control, and physical implementation have been examined separately, while their combination has yet to be thoroughly investigated. Herein, the accuracy of the dynamic model of the multisegment continuum robot is improved by adding new elements that include variable stiffness and actuation behavior. Then, this improved model is integrated with state-of-the-art system identification and dynamic task space control and experiments are performed to validate this combination on a real-world manipulator. As a means of encouraging future research on dynamic control for soft robotic manipulators, the source code is made available for modeling, control, and system identification, along with the recipes for fabricating the manipulator.ISSN:2640-456

    Adaptive Control of a Soft Continuum Manipulator

    No full text
    Soft robots are made of compliant and deformable materials and can perform tasks challenging for conventional rigid robots. The inherent compliance of soft robots makes them more suitable and adaptable for interactions with humans and the environment. However, this preeminence comes at a cost: their continuum nature makes it challenging to develop robust model-based control strategies. Specifically, an adaptive control approach addressing this challenge has not yet been applied to physical soft robotic arms. This work presents a reformulation of dynamics for a soft continuum manipulator using the Euler-Lagrange method. The proposed model eliminates the simplifying assumption made in previous works and provides a more accurate description of the robot's inertia. Based on our model, we introduce a task-space adaptive control scheme. This controller is robust against model parameter uncertainties and unknown input disturbances. The controller is implemented on a physical soft continuum arm. A series of experiments were carried out to validate the effectiveness of the controller in task-space trajectory tracking under different payloads. The controller outperforms the state-of-the-art method both in terms of accuracy and robustness. Moreover, the proposed model-based control design is flexible and can be generalized to any continuum robotic arm with an arbitrary number of continuum segments

    A Robust Adaptive Approach to Dynamic Control of Soft Continuum Manipulators

    No full text
    Soft robots are made of compliant and deformable materials and can perform tasks challenging for conventional rigid robots. The inherent compliance of soft robots makes them more suitable and adaptable for interactions with humans and the environment. However, this preeminence comes at a cost: their continuum nature makes it challenging to develop robust model-based control strategies. Specifically, an adaptive control approach addressing this challenge has not yet been applied to physical soft robotic arms. This work presents a reformulation of dynamics for a soft continuum manipulator using the Euler-Lagrange method. The proposed model eliminates the simplifying assumption made in previous works and provides a more accurate description of the robot's inertia. Based on our model, we introduce a task-space adaptive control scheme. This controller is robust against model parameter uncertainties and unknown input disturbances. The controller is implemented on a physical soft continuum arm. A series of experiments were carried out to validate the effectiveness of the controller in task-space trajectory tracking under different payloads. The controller outperforms the state-of-the-art method both in terms of accuracy and robustness. Moreover, the proposed model-based control design is flexible and can be generalized to any continuum robotic arm with an arbitrary number of continuum segments
    corecore