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Abstract—We present an improved version of the Saturation in
the Null Space (SNS) algorithm for redundancy resolution at the
velocity level. In addition to hard bounds on joint space motion,
we consider also Cartesian box constraints that cannot be violated
at any time. The modified algorithm combines all bounds into
a single augmented generalised vector and gives equal, highest
priority to all inequality constraints. When needed, feasibility of
the original task is enforced by the SNS task scaling procedure.
Simulation results are reported for a 6R planar robot.

Index Terms—Motion control, Redundant robots, Inequality
constraints, Hard limits.

I. INTRODUCTION

Given a m-dimensional primary task to be performed by a
robot with n joints, with n > m (redundancy), a standard
method to prevent violation of joint/Cartesian inequalities
during motion is to resort to some form of artificial poten-
tials [1], pushing away from their limits the joints and the
control points on the robot body [2]. However, this method
is highly parameter-dependent and may introduce oscillations
when activating/deactivating the avoidance task in proximity
of the bounds [3]. To milden such undesired behavior, the
null-space projection term or the activation function can be
designed in an incremental way [4], [5]. Nonetheless, selection
of appropriate gains is still needed. Moreover, in case of
multiple tasks, incorporating the avoidance behavior in the
original Stack of Tasks (SoT) will assign different priorities
to each single constraint [4]–[7].

Other numerical approaches incorporate joint space and
Cartesian motion limits as inequality constraints using
parameter-free optimization, such as Quadratic Programming
(QP) [8], [9]. However, these methods are computationally
slower than analytical solutions and do not lead to realizable
solutions when the original task(s) is not compatible with the
set of inequality constraints. The SNS algorithm introduced
in [10] links QP to the SoT approach and overcomes these
challenges. In the original paper, joint motion limits were
considered as hard bounds (i.e., that cannot be relaxed in
a least-square sense) and treated out of the SoT. On the
other hand, Cartesian (avoidance) constraints were not handled
as hard bounds. In [11], an approach has been proposed
to include joint and Cartesian inequality constraints in the
SoT for torque-controlled manipulators. However, joint limits
are always pre-assigned the highest priority over all other
constraints. Moreover, all violated constraints are set to their
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limits at the saturation level, as opposed to what happens
in [10]. This is neither necessary nor optimal, and will often
lead to high-frequency oscillations at the level of commands.

In this paper, we propose several improvements to the SNS
algorithm at the velocity level introduced in [10]. First, both
joint and Cartesian inequality (box) constraints are treated
as hard bounds. Second, all inequalities are assigned the
same priority, i.e., enforced anyway independently of the end-
effector (EE) task (or simply considered out of the SoT, in case
of multiple tasks). Finally, the modifications are made so as
to preserve the automatic optimal task scaling of the original
SNS approach, which relaxes the primary task (keeping its ge-
ometric direction) only when no feasible solution would exist,
while guaranteeing satisfaction of all inequality constraints.
The resulting algorithm does not need parameter tuning and
is faster than QP solvers.

II. METHODOLOGY

A. Generalised constraints

Consider a robot with n joints and r generic Cartesian
control points distributed on the robot body, each of dimension
di ∈ {1, 2, 3}, i = 1, . . . , r. We define an augmented vector

a =
(
qT pT

cp,1 pT
cp,2 . . . pT

cp,r

)T
, (1)

where q ∈ Rn denotes the joint variables and pcp,i ∈ Rdi

is the position of the i-th control point, i = 1, . . . , r. The
joint variables as well as the Cartesian control points will have
some desired motion restrictions. Accordingly, we define the
augmented matrix

A =
(
I JT

cp,1 JT
cp,2 . . . JT

cp,r

)T
, (2)

where I ∈ Rn×n is the identity matrix and Jcp,i ∈ Rdi×n

is the Jacobian matrix of the i-th control point. Define the
position and velocity limits for each joint, j = 1, . . . , n, as

Qmin
j ≤ qj ≤ Qmax

j , V min
j ≤ q̇j ≤ V max

j , (3)

and the limits for each control point, i = 1, . . . , r, as

Pmin
cp,i ≤ pcp,i ≤ Pmax

cp,i , V min
cp,i ≤ ṗcp,i ≤ V max

cp,i . (4)

At a generic time instant, the box constraints for the velocity
of each component of (1) are given by

Q̇min,j = max

{
Qmin

j − qj
T

, V min
j

}
,

Q̇max,j = min

{
Qmax

j − qj
T

, V max
j

}
,

(5)
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Algorithm 1 SNS with generalised inequality constraints
q̇N ← 0, s∗ ← 0, P ← I, Alim ← null, ȧN ← null

2: repeat
limits violated← FALSE

4: q̇ ← q̇N + (J P )# (ẋ− J q̇N )
ȧ← Aq̇

6: if ∃h ∈
[
1 : n+ Σr

1di
]

: (ȧh < bmin,h) ∨ (ȧh > bmax,h) then
limits violated← TRUE

8: α← A (J P )# ẋ
β ← ȧ−α

10: getTaskScalingFactor(α,β)
if {task scaling factor} > s∗ then

12: s∗ ← {task scaling factor}
q̇∗N ← q̇N , P

∗ ← P
14: end if

k ← {the most critical constraint}
16: Alim ← concatenate(Alim,Ak)

ȧN ←
{

concatenate(ȧN , bmax,k) if (ȧh > bmax,k)

concatenate(ȧN , bmin,k) if (ȧh < bmin,k)

18: P ← I − (Alim)# (Alim)
if rank(JP ) < m then

20: q̇ ← q̇∗N + (J P ∗)#
(
s∗ẋ− J q̇∗N

)
limits violated← FALSE

22: end if
end if

24: q̇N ← (Alim)# ȧN
until limits violated = TRUE

26: q̇SNS ← q̇

and

Ṗmin
cp,i = max

{
Pmin

cp,i − pcp,i

T
,V min

cp,i

}
,

Ṗmax
cp,i = min

{
Pmax

cp,i − pcp,i

T
,V max

cp,i

}
,

(6)

where T is the sampling time. Accordingly, the generalised
inequality constraints can be written as the augmentation of
joint and Cartesian bounds in (5) and (6) as

Bmin =
(
Q̇min,1, . . . Q̇min,n, Ṗmin

cp,1 , . . . Ṗmin
cp,r

)T
,

Bmax =
(
Q̇max,1, . . . Q̇max,n, Ṗmax

cp,1 , . . . Ṗmax
cp,r

)T
.

(7)

B. Modified SNS algorithm

Consider a single EE velocity task ẋd ∈ Rm, with n > m,
and its Jacobian matrix J ∈ Rm×n, to be achieved under
the generalised hard constraints in (7). The pseudo-code of
the modified SNS method is presented in Algorithm 1. If the
Cartesian inequality limits in (4) are discarded, the augmented
matrix (2) becomes A = I and it is easy to show that
Algorithm 1 simplifies to the original SNS algorithm in [10].
Note that at line 15, the most critical constraint corresponds
to the smallest scaling factor sk over all constraints. Also, at
line 19, when there is no way to perform the desired task
under the hard inequality constrains, we apply an optimal task
scaling factor as computed by Algorithm 2, similar to [10].

III. RESULTS

Verification for the proposed algorithm is done through
MATLAB simulations, using a 6R planar robot arm (n = 6)
and considering joint and Cartesian inequality constraints. The

Algorithm 2 Optimal task scaling factor
function GETTASKSCALINGFACTOR(α,β)

2: for h← 1 : n+ Σr
1di do

Lh ← bmin,h − βh
4: Uh ← bmax,h − βh

if αh < 0 ∧ Li < 0 then
6: if αh < Lh then

sh ← Lh/αh
8: else

sh ← 1
10: end if

else if αh > 0 ∧ Uh > 0 then
12: if αh > Uh then

sh ← Uh/αh
14: else

sh ← 1
16: end if

else
18: sh ← 0

end if
20: end for

return s
22: end function

EE is required to track a 2D linear path (m = 2), see Fig. 1.
Therefore, the primary EE velocity task is defined as

ẋ = ẋd +Kp(xd − xee), (8)

with the control gain matrix Kp = diag{50, 50} and the EE
position xee computed by the direct kinematics. The sampling
time is T = 1 [ms] and the initial robot configuration (in [rad])
is chosen as

q0 =
( π

6
−π
6
−π
6

π

3
−π
6
−π
6

)T
. (9)

The limits (3) are equal and symmetric for all joints:

Qmax
j = −Qmin

j =
π

2
[rad], V max

j = −V min
j = 1 [rad/s].

(10)
We consider r = 5 control points (each with di = 1)
along the robot body, located at the joints j = 2, . . . , 6. The
corresponding limits (4) are equal for all points, and imposed
only over the y-direction:

Pmax,y
cp,i = 1 [m], Pmin,y

cp,i = −1.1 [m],

V max,y
cp,i = −V min,y

cp,i = 0.8 [m/s].
(11)

The EE starts the motion very close to the desired path. As
shown in Fig. 2, the positional error converges immediately
and remains zero along the whole task. Accordingly, the
task scaling is active (s < 1) only for few milliseconds at
beginning, to comply with the saturated joint and Cartesian
velocity limits due to the initial error recovery —see Figs. 3
and 4. Later, the robot is able to perform the complete task
perfectly while satisfying all inequality constraints (many of
them in saturation). The few discontinuities in the commanded
joint velocity in Fig. 3 can be addressed by extending the
algorithm to the acceleration level and including suitable joint
acceleration limits in the set of constraints.

IV. CONCLUSION

We have proposed major enhancements to the basic SNS
algorithm at the velocity level for redundant robots. Cartesian
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Fig. 1: Initial (black) and final (gray) configurations of the 6R
planar arm. The red circles represent the robot joints (and the
EE tip). The desired EE path is the blue line, to be traced from
right to left. The dashed red lines are the Cartesian position
limits. The dashed green lines show the path of control points
during task execution.
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Fig. 2: EE positional errors and related task scaling factor.

inequality constraints are included and treated as hard limits,
while preserving all the nice features of the original method.
The modified algorithm can be extended to include multiple
tasks having different priorities. Moreover, it can be imple-
mented also at the acceleration level, which is beneficial for
involving dynamic properties in the resolution of redundancy
and is suitable for torque-controlled systems.
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Fig. 3: Evolution of the joints during task execution. The
dotted red lines are the bounds on the joint motion.
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Fig. 4: Evolution of the control points along the y-direction.
The dotted red lines are the Cartesian bounds on the motion
of the control points.
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