457 research outputs found

    Gravitation and inertia; a rearrangement of vacuum in gravity

    Full text link
    We address the gravitation and inertia in the framework of 'general gauge principle', which accounts for 'gravitation gauge group' generated by hidden local internal symmetry implemented on the flat space. We connect this group to nonlinear realization of the Lie group of 'distortion' of local internal properties of six-dimensional flat space, which is assumed as a toy model underlying four-dimensional Minkowski space. The agreement between proposed gravitational theory and available observational verifications is satisfactory. We construct relativistic field theory of inertia and derive the relativistic law of inertia. This theory furnishes justification for introduction of the Principle of Equivalence. We address the rearrangement of vacuum state in gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys. Space Sc

    The combined use of imaging approaches to assess drug release from multicomponent solid dispersions

    No full text
    PURPOSE: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution. METHODS: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier. RESULTS: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner. CONCLUSIONS: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process

    High Resolution CO Imaging of the Molecular Disk around the jets in KjPN 8

    Full text link
    We report high resolution (2.5 arcsec) CO J=1-0 line imaging which confirms the presence of a molecular disk around the origin of the spectacular, 14 arcmin times 4 arcmin, episodic jets in the planetary nebula KjPn 8. The disk is 30 arcsec in diameter with an expansion velocity of approximately 7 km/s. The axis of the disk is aligned with the youngest and fastest (approximately 300 km/s) of the bipolar jets, and there is evidence for interaction between the jets and the disk material. The inner 4 arcsec of the disk are photo-ionized by the central star. The disk-jet system dominates the environment of this young nebula, and should govern the morphology of KjPn 8 as it evolves to become fully ionized.Comment: 15 pages, 4 figures, accepted for publication in Astrophysical Journal Letter

    Attenuated total reflection-FT-IR spectroscopic imaging of protein crystallization

    Get PDF
    Protein crystallization is of strategic and commercial relevance in the post-genomic era because of its pivotal role in structural proteomics projects. Although protein structures are crucial for understanding the function of proteins and to the success of rational drug design and other biotechnology applications, obtaining high quality crystals is a major bottleneck to progress. The major means of obtaining crystals is by massive-scale screening of a target protein solution with numerous crystallizing agents. However, when crystals appear in these screens, one cannot easily know if they are crystals of protein, salt, or any other molecule that happens to be present in the trials. We present here a method based on Attenuated Total Reflection (ATR)-FT-IR imaging that reliably identifies protein crystals through a combination of chemical specificity and the visualizing capability of this approach, thus solving a major hurdle in protein crystallization. ATR-FT-IR imaging was successfully applied to study the crystallization of thaumatin and lysozyme in a high-throughput manner, simultaneously from six different solutions. This approach is fast as it studies protein crystallization in situ and provides an opportunity to examine many different samples under a range of conditions

    Models of Neutrino Masses and Baryogenesis

    Get PDF
    Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is generated before the electroweak phase transition, it is possible to dicriminate different classes of models of neutrino masses. While see-saw mechanism and the triplet higgs mechanism are preferred, the Zee-type radiative models and the R-parity breaking models requires additional inputs to generate baryon asymmetry of the universe during the electroweak phase transition.Comment: 27 pages including 5 figures; Review article for Pramana: the Indian Journal of Physic

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    The Second Byurakan Survey Galaxies. I. The Optical Database

    Full text link
    A database for the entire catalog of the Second Byurakan Survey (SBS) galaxies is presented. It contains new measurements of their optical parameters and additional information taken from the literature and other databases. The measurements were made using Ipg(near-infrared), Fpg(red) and Jpg(blue) band images from photographic sky survey plates obtained by the Palomar Schmidt telescope and extracted from the STScI Digital Sky Survey (DSS). The database provides accurate coordinates, morphological type, spectral and activity classes, apparent magnitudes and diameters, axial ratios, and position angles, as well as number counts of neighboring objects in a circle of radius 50 kpc. The total number of individual SBS objects in the database is now 1676. The 188 Markarian galaxies which were re-discovered by SBS are not included in this database. We also include redshifts that are now available for 1576 SBS objects, as well as 2MASS infrared magnitudes for 1117 SBS galaxies.Comment: 13 pages, 1 figure, 1 tabl
    corecore