19 research outputs found

    Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency

    Get PDF
    The development of scalable deposition methods for stable perovskite layers is a prerequisite for the development and future commercialization of perovskite solar modules. However, there are two major challenges, i.e., scalability and stability. In sharp contrast to a previous report, here we develop a fully vapor based scalable hybrid chemical vapor deposition (HCVD) process for depositing Cs-formamidinium (FA) mixed cation perovskite films, which alleviates the problem encountered when using conventional solution coating of mainly methylammonium lead iodide (MAPbI3). Using our HCVD method, we fabricate perovskite films of Cs0.1FA0.9PbI2.9Br0.1 with enhanced thermal and phase stabilities, by the intimate incorporation of Cs into FA based perovskite films. In addition, the SnO2 electron transport layer (ETL) (prepared by sputter deposition) is found to be damaged during the HCVD process. In combination with precise interface engineering of the SnO2 ETL, we demonstrate relatively large area solar modules with efficiency approaching 10% and with a designated area of 91.8 cm2 fabricated on 10 cm × 10 cm substrates (14 cells in series). On the basis of our preliminary operational stability tests on encapsulated perovskite solar modules, we extrapolated that the T80 lifetime is approximately 500 h (under the light illumination of 1 sun and 25 °C)

    Holistic Strategies Lead to Enhanced Efficiency and Stability of Hybrid Chemical Vapor Deposition Based Perovskite Solar Cells and Modules

    Get PDF
    Hybrid chemical vapor deposition (HCVD) is a promising method for the up-scalable fabrication of perovskite solar cells/modules (PSCs/PSMs). However, the efficiency of the HCVD-based perovskite solar cells still lags behind the solution-processed PSCs/PSMs. In this work, the oxygen loss of the electron transport layer of SnO2 in the HCVD process and its negative impact on solar cell device performance are revealed. As the counter-measure, potassium sulfamate (H2KNO3S) is introduced as the passivation layer to both mitigate the oxygen loss issue of SnO2 and passivate the uncoordinated Pb2+ in the perovskite film. In parallel, N-methylpyrrolidone (NMP) is used as the solvent to dissolve PbI2 by forming the intermediate phase of PbI2•NMP, which can greatly lower the energy barrier for perovskite nucleation in the HCVD process. The perovskite seed is employed to further modulate the kinetics of perovskite crystal growth and improve the grain size. The resultant solar cells yield a champion power conversion efficiency (PCE) of 21.98% (0.09 cm2) with a stable output performance of 21.15%, and the PCEs of the mini-modules are 16.16% (22.4 cm2, stable output performance of 14.72%) and 12.12% (91.8 cm2). Furthermore, the unencapsulated small area device shows an outstanding operational stability with a T80 lifetime exceeding 4000 h.journal articl

    A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability

    Get PDF
    The upscaling of perovskite solar cells to module scale and long-term stability have been recognized as the most important challenges for the commercialization of this emerging photovoltaic technology. In a perovskite solar module, each interface within the device contributes to the efficiency and stability of the module. Here, we employed a holistic interface stabilization strategy by modifying all the relevant layers and interfaces, namely the perovskite layer, charge transporting layers and device encapsulation, to improve the efficiency and stability of perovskite solar modules. The treatments were selected for their compatibility with low-temperature scalable processing and the module scribing steps. Our unencapsulated perovskite solar modules achieved a reverse-scan efficiency of 16.6% for a designated area of 22.4 cm². The encapsulated perovskite solar modules, which show efficiencies similar to the unencapsulated one, retained approximately 86% of the initial performance after continuous operation for 2,000 h under AM1.5G light illumination, which translates into a T₉₀ lifetime (the time over which the device efficiency reduces to 90% of its initial value) of 1,570 h and an estimated T80 lifetime (the time over which the device efficiency reduces to 80% of its initial value) of 2,680 h

    Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels

    No full text
    We performed detailed photoluminescence (PL) spectroscopy studies of three different types of single-walled carbon nanotubes (SWNTs) by using samples that contain essentially only one chiral type of SWNT, (6,5), (7,5), or (10,5). The observed PL spectra unambiguously show the existence of an emission sideband at ∼140 meV below the lowest singlet excitonic (E11) level, whose identity and origin are now under debate. We find that the energy separation between the E11 level and the sideband is independent of the SWNT diameter within our experimental certainty. Based on this, we ascribe the origin of the observed sideband to coupling between K-point phonons and dipole-forbidden dark excitons, as recently suggested based on the measurement of (6,5) SWNTs

    Photocurrent Quantum Yield of Semiconducting Carbon Nanotubes: Dependence on Excitation Energy and Exciton Binding Energy

    No full text
    We address the dependence of the relative photocurrent quantum yield (QY) on the excitation energy and the exciton binding energy of semiconducting single-walled carbon nanotubes (s-SWNTs) having well-defined chiral indexes, by analyzing both the optical absorption and the photocurrent spectra. First, we examine the QY of a sample consisting of one sort of nanotube (such as (7,5)), which allows revealing that QY depends on the excitation energy and hence on the nature of the electronic transition. In particular, we demonstrate that the QY of the second excitonic transition (<i>E</i><sub>22</sub>) is relatively higher than that of the first excitonic transition (<i>E</i><sub>11</sub>). Then, we extend the analysis to a sample consisting of five kinds of nanotubes (namely, (7,5), (7,6), (8,6), (8,7), (9,7)), which permits demonstrating for the first time that QY increases with increasing the nanotube’s diameter and with decreasing the exciton binding energy, according to two categories known as type 1 and type 2 nanotubes. Finally, we discuss these results in the framework of the electric-field-assisted exciton dissociation model in order to gain further insight into the photocarrier generation mechanism in s-SWNTs
    corecore