3,308 research outputs found

    Flavor and chiral oscillations with Dirac wave packets

    Get PDF
    We report about recent results on Dirac wave packets in the treatment of neutrino flavor oscillation where the initial localization of a spinor state implies an interference between positive and negative energy components of mass-eigenstate wave packets. A satisfactory description of fermionic particles requires the use of the Dirac equation as evolution equation for the mass-eigenstates. In this context, a new flavor conversion formula can be obtained when the effects of chiral oscillation are taken into account. Our study leads to the conclusion that the fermionic nature of the particles, where chiral oscillations and the interference between positive and negative frequency components of mass-eigenstate wave packets are implicitly assumed, modifies the standard oscillation probability. Nevertheless, for ultra-relativistic particles and sharply peaked momentum distributions, we can analytically demonstrate that these modifications introduce correction factors proportional to (m12/p0) square which are practically un-detectable by any experimental analysisComment: 16 pages, 2 figure

    Additional time-dependent phase in the flavor-conversion formulas

    Get PDF
    In the framework of intermediate wave-packets for treating flavor oscillations, we quantify the modifications which appear when we assume a strictly peaked momentum distribution and consider the second-order corrections in a power series expansion of the energy. By following a sequence of analytic approximations, we point out that an extra time-dependent phase is merely the residue of second-order corrections. Such phase effects are usually ignored in the relativistic wave-packet treatment, but they do not vanish non-relativistically and can introduce some small modifications to the oscillation pattern even in the ultra-relativistic limit.Comment: 9 pages, 3 figure

    The Dyer-Roeder distance-redshift relation in inhomogeneous universes

    Get PDF
    Using Monte-Carlo methods, we determine the best-fit value of the homogeneity parameter alpha in the Dyer-Roeder distance-redshift relation for a variety of redshifts, inhomogeneity models and cosmological parameter values. The relation between alpha and the fraction of compact objects, f_p, is found to be approximately linear. This relation can be parametrized with reasonable accuracy for all cases treated in this paper by alpha = a*f_p, where a = 0.6.Comment: 5 pages, 10 figures, submitted to Phys.Rev.

    Service life evaluation of rigid explosive transfer lines

    Get PDF
    This paper describes a joint Army/NASA-sponsored research program on the service life evaluation of rigid explosive transfer lines. These transfer lines are used to initiate emergency crew escape functions on a wide variety of military and NASA aircraft. The purpose of this program was to determine quantitatively the effects of service, age, and degradation on rigid explosive transfer lines to allow responsible, conservative, service life determination. More than 800 transfer lines were removed from the U.S. Army AH-1G and AH-1S, the U.S. Air Force B-1 and F-111, and the U.S. Navy F-14 aircraft for testing. The results indicated that the lines were not adversely affected by age, service, or a repeat of the thermal qualification tests on full-service lines. Extension of the service life of rigid explosive transfer lines should be considered, since considerable cost savings could be realized with no measurable decrease in system reliability

    Lensing magnification of supernovae in the GOODS-fields

    Full text link
    Gravitational lensing of high-redshift supernovae is potentially an important source of uncertainty when deriving cosmological parameters from the measured brightness of Type Ia supernovae, especially in deep surveys with scarce statistics. Photometric and spectroscopic measurements of foreground galaxies along the lines-of-sight of 33 supernovae discovered with the Hubble Space Telescope, both core-collapse and Type Ia, are used to model the magnification probability distributions of the sources. Modelling galaxy halos with SIS or NFW-profiles and using M/L scaling laws provided by the Faber-Jackson and Tully-Fisher relations, we find clear evidence for supernovae with lensing (de)magnification. However, the magnification distribution of the Type Ia supernovae used to determine cosmological distances matches very well the expectations for an unbiased sample, i.e.their mean magnification factor is consistent with unity. Our results show that the lensing distortions of the supernova brightness can be well understood for the GOODS sample and that correcting for this effect has a negligible impact on the derived cosmological parameters.Comment: 22 pages, 9 figures, accepted for publication by Ap

    Virtual slides in peer reviewed, open access medical publication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication.</p> <p>Approach</p> <p>Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images.</p> <p>Technology and Performance</p> <p>The open access journal Diagnostic Pathology <url>http://www.diagnosticpathology.org</url> has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011.</p> <p>Results and Perspectives</p> <p>Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation.</p> <p>Virtual Slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819</url>.</p

    Corrections for gravitational lensing of supernovae: better than average?

    Full text link
    We investigate the possibility of correcting for the magnification due to gravitational lensing of standard candle sources, such as Type Ia supernovae. Our method uses the observed properties of the foreground galaxies along the lines-of-sight to each source and the accuracy of the lensing correction depends on the quality and depth of these observations as well as the uncertainties in translating the observed luminosities to the matter distribution in the lensing galaxies. The current work is limited to cases where the matter density is dominated by the individual galaxy halos. However, it is straightforward to generalize the method to include also gravitational lensing from cluster scale halos. We show that the dispersion due to lensing for a standard candle source at z=1.5 can be reduced from about 7% to ~< 3%, i.e. the magnification correction is useful in reducing the scatter in the Type Ia Hubble diagram, especially at high redshifts where the required long exposure times makes it hard to reach large statistics and the dispersion due to lensing becomes comparable to the intrinsic Type Ia scatter.Comment: Matches accepted version, includes clarifications and additional issues. 28 pages, 7 figures, accepted for publication in Ap

    Coherence of neutrino flavor mixing in quantum field theory

    Get PDF
    In the simplistic quantum mechanical picture of flavor mixing, conditions on the maximum size and minimum coherence time of the source and detector regions for the observation of interference---as well as the very viability of the approach---can only be argued in an ad hoc way from principles external to the formalism itself. To examine these conditions in a more fundamental way, the quantum field theoretical SS-matrix approach is employed in this paper, without the unrealistic assumption of microscopic stationarity. The fully normalized, time-dependent neutrino flavor mixing event rates presented here automatically reveal the coherence conditions in a natural, self-contained, and physically unambiguous way, while quantitatively describing the transition to their failure.Comment: 12 pages, submitted to Phys. Rev.

    Starvation Resistance is Associated with Developmentally Specified Changes in Sleep, Feeding and Metabolic Rate

    Full text link
    Food shortage represents a primary challenge to survival, and animals have adapted diverse developmental, physiological and behavioral strategies to survive when food becomes unavailable. Starvation resistance is strongly influenced by ecological and evolutionary history, yet the genetic basis for the evolution of starvation resistance remains poorly understood. The fruit fly Drosophila melanogaster provides a powerful model for leveraging experimental evolution to investigate traits associated with starvation resistance. While control populations only live a few days without food, selection for starvation resistance results in populations that can survive weeks. We have previously shown that selection for starvation resistance results in increased sleep and reduced feeding in adult flies. Here, we investigate the ontogeny of starvation resistance-associated behavioral and metabolic phenotypes in these experimentally selected flies. We found that selection for starvation resistance resulted in delayed development and a reduction in metabolic rate in larvae that persisted into adulthood, suggesting that these traits may allow for the accumulation of energy stores and an increase in body size within these selected populations. In addition, we found that larval sleep was largely unaffected by starvation selection and that feeding increased during the late larval stages, suggesting that experimental evolution for starvation resistance produces developmentally specified changes in behavioral regulation. Together, these findings reveal a critical role for development in the evolution of starvation resistance and indicate that selection can selectively influence behavior during defined developmental time points
    • …
    corecore