20 research outputs found

    Privacy Protection of Synthetic Smart Grid Data Simulated via Generative Adversarial Networks

    No full text
    The development in smart meter technology has made grid operations more efficient based on fine-grained electricity usage data generated at different levels of time granularity. Consequently, machine learning algorithms have benefited from these data to produce useful models for important grid operations. Although machine learning algorithms need historical data to improve predictive performance, these data are not readily available for public utilization due to privacy issues. The existing smart grid data simulation frameworks generate grid data with implicit privacy concerns since the data are simulated from a few real energy consumptions that are publicly available. This paper addresses two issues in smart grid. First, it assesses the level of privacy violation with the individual household appliances based on synthetic household aggregate loads consumption. Second, based on the findings, it proposes two privacy-preserving mechanisms to reduce this risk. Three inference attacks are simulated and the results obtained confirm the efficacy of the proposed privacy-preserving mechanisms

    DFTMicroagg: a dual-level anonymization algorithm for smart grid data

    No full text
    The introduction of advanced metering infrastructure (AMI) smart meters has given rise to fine-grained electricity usage data at different levels of time granularity. AMI collects high-frequency daily energy consumption data that enables utility companies and data aggregators to perform a rich set of grid operations such as demand response, grid monitoring, load forecasting and many more. However, the privacy concerns associated with daily energy consumption data has been raised. Existing studies on data anonymization for smart grid data focused on the direct application of perturbation algorithms, such as microaggregation, to protect the privacy of consumers. In this paper, we empirically show that reliance on microaggregation alone is not sufficient to protect smart grid data. Therefore, we propose DFTMicroagg algorithm that provides a dual level of perturbation to improve privacy. The algorithm leverages the benefits of discrete Fourier transform (DFT) and microaggregation to provide additional layer of protection. We evaluated our algorithm on two publicly available smart grid datasets with millions of smart meters readings. Experimental results based on clustering analysis using k-Means, classification via k-nearest neighbor (kNN) algorithm and mean hourly energy consumption forecast using Seasonal Auto-Regressive Integrated Moving Average with eXogenous (SARIMAX) factors model further proved the applicability of the proposed method. Our approach provides utility companies with more flexibility to control the level of protection for their published energy data

    Energy disaggregation risk resilience through microaggregation and discrete Fourier transform

    No full text
    Progress in the field of Non-Intrusive Load Monitoring (NILM) has been attributed to the rise in the application of artificial intelligence. Nevertheless, the ability of energy disaggregation algorithms to disaggregate different appliance signatures from aggregated smart grid data poses some privacy issues. This paper introduces a new notion of disclosure risk termed energy disaggregation risk. The performance of Sequence-to-Sequence (Seq2Seq) NILM deep learning algorithm along with three activation extraction methods are studied using two publicly available datasets. To understand the extent of disclosure, we study three inference attacks on aggregated data. The results show that Variance Sensitive Thresholding (VST) event detection method outperformed the other two methods in revealing households' lifestyles based on the signature of the appliances. To reduce energy disaggregation risk, we investigate the performance of two privacy-preserving mechanisms based on microaggregation and Discrete Fourier Transform (DFT). Empirically, for the first scenario of inference attack on UK-DALE, VST produces disaggregation risks of 99%, 100%, 89% and 99% for fridge, dish washer, microwave, and kettle respectively. For washing machine, Activation Time Extraction (ATE) method produces a disaggregation risk of 87%. We obtain similar results for other inference attack scenarios and the risk reduces using the two privacy-protection mechanisms

    Microarray cancer feature selection: Review, challenges and research directions

    No full text
    Microarray technology has become an emerging trend in the domain of genetic research in which many researchers employ to study and investigate the levels of genes’ expression in a given organism. Microarray experiments have lots of application areas in the health sector such as diseases prediction and diagnosis, cancer study and soon. The enormous quantity of raw gene expression data usually results in analytical and computational complexities which include feature selection and classification of the datasets into the correct class or group. To achieve satisfactory cancer classification accuracy with the complete set of genes remains a great challenge, due to the high dimensions, small sample size, and presence of noise in gene expression data. Feature reduction is critical and sensitive in the classification task. Therefore, this paper presents a comprehensive survey of studies on microarray cancer classification with a focus on feature selection methods. In this paper, the taxonomy of the various feature selection methods used for microarray cancer classification and open research issues have been extensively discussed

    Iris Feature Extraction for Personal Identification using Fast Wavelet Transform (FWT) 1

    No full text
    Iris is the annular region of the eye bounded by the pupil and the sclera(white of the eye) on either side. The iris has many interlacing features such as stripes, freckles, coronas, radial furrow, crypts, zigzag collarette, rings etc collectively referred to as texture of the iris. This texture is well known to provide a signature that is unique to each subject. All these features are extracted using different algorithms i.e features extraction is the process of extracting information from the iris image. Iris feature extraction is the crucial stage of the whole iris recognition process for personal identification. This is a key process where the two dimensional image is converted to a set of mathematical parameters. The significant features of the iris must be encoded so that comparisons between templates can be made. In this study the feature of the iris is extracted using Fast Wavelet Transform (FWT). The algorithm is fast and has a low complexity rate. The system encodes the features to generate its iris feature codes

    Application of Computational Intelligence Algorithms in Radio Propagation: A Systematic Review and Metadata Analysis

    No full text
    The importance of wireless path loss prediction and interference minimization studies in various environments cannot be over-emphasized. In fact, numerous researchers have done massive work on scrutinizing the effectiveness of existing path loss models for channel modeling. The difficulties experienced by the researchers determining or having the detailed information about the propagating environment prompted for the use of computational intelligence (CI) methods in the prediction of path loss. This paper presents a comprehensive and systematic literature review on the application of nature-inspired computational approaches in radio propagation analysis. In particular, we cover artificial neural networks (ANNs), fuzzy inference systems (FISs), swarm intelligence (SI), and other computational techniques. The main research trends and a general overview of the different research areas, open research issues, and future research directions are also presented in this paper. This review paper will serve as reference material for researchers in the field of channel modeling or radio propagation and in particular for research in path loss prediction

    Empirical Analysis of Data Streaming and Batch Learning Models for Network Intrusion Detection

    No full text
    Network intrusion, such as denial of service, probing attacks, and phishing, comprises some of the complex threats that have put the online community at risk. The increase in the number of these attacks has given rise to a serious interest in the research community to curb the menace. One of the research efforts is to have an intrusion detection mechanism in place. Batch learning and data streaming are approaches used for processing the huge amount of data required for proper intrusion detection. Batch learning, despite its advantages, has been faulted for poor scalability due to the constant re-training of new training instances. Hence, this paper seeks to conduct a comparative study using selected batch learning and data streaming algorithms. The batch learning and data streaming algorithms considered are J48, projective adaptive resonance theory (PART), Hoeffding tree (HT) and OzaBagAdwin (OBA). Furthermore, binary and multiclass classification problems are considered for the tested algorithms. Experimental results show that data streaming algorithms achieved considerably higher performance in binary classification problems when compared with batch learning algorithms. Specifically, binary classification produced J48 (94.73), PART (92.83), HT (98.38), and OBA (99.67), and multiclass classification produced J48 (87.66), PART (87.05), HT (71.98), OBA (82.80) based on accuracy. Hence, the use of data streaming algorithms to solve the scalability issue and allow real-time detection of network intrusion is highly recommended

    Empirical Analysis of Data Streaming and Batch Learning Models for Network Intrusion Detection

    No full text
    Network intrusion, such as denial of service, probing attacks, and phishing, comprises some of the complex threats that have put the online community at risk. The increase in the number of these attacks has given rise to a serious interest in the research community to curb the menace. One of the research efforts is to have an intrusion detection mechanism in place. Batch learning and data streaming are approaches used for processing the huge amount of data required for proper intrusion detection. Batch learning, despite its advantages, has been faulted for poor scalability due to the constant re-training of new training instances. Hence, this paper seeks to conduct a comparative study using selected batch learning and data streaming algorithms. The batch learning and data streaming algorithms considered are J48, projective adaptive resonance theory (PART), Hoeffding tree (HT) and OzaBagAdwin (OBA). Furthermore, binary and multiclass classification problems are considered for the tested algorithms. Experimental results show that data streaming algorithms achieved considerably higher performance in binary classification problems when compared with batch learning algorithms. Specifically, binary classification produced J48 (94.73), PART (92.83), HT (98.38), and OBA (99.67), and multiclass classification produced J48 (87.66), PART (87.05), HT (71.98), OBA (82.80) based on accuracy. Hence, the use of data streaming algorithms to solve the scalability issue and allow real-time detection of network intrusion is highly recommended
    corecore