50 research outputs found

    A Model of Olive-sided Flycatcher (Contopus cooperi) Occupancy in the Northeastern United States

    Get PDF
    The Olive-sided Flycatcher (Contopus cooperi) is a migratory bird species that breeds in coniferous forests and bogs. Over the past few decades, they have shown significant population declines across their range, particularly at the southern edge. These declines have prompted many government agencies to list them as a Species of Special Concern and have renewed interest in conservation. Therefore, tools are needed to better understand their habitat relationships and guide potential conservation actions in the northeastern United States. In this project, a presence-only occupancy model was developed to examine the impacts of habitat factors on Olive-sided Flycatcher occupancy in Maine, Massachusetts, New Hampshire, and Vermont. Olive-sided Flycatcher observations from year to year were obtained from eBird, a large community science database. Habitat covariates were chosen based on existing knowledge of the species’ habitat requirements and these were derived from the National Land Cover Database. Multiple models were considered including proportion of coniferous forests, wetlands, developed areas, canopy cover, and distance to the nearest road. I used the R-package maxlike to assess how well these habitat variables predicted the occurrence of Olive-sided Flycatchers. The top model received overwhelming empirical support and showed that Olive-sided Flycatcher occupancy in the northeastern United States is best represented by the proportion of wetlands in the surrounding area. These results suggest that wetlands, bogs, and beaver meadows could provide important habitat for Olive-sided Flycatchers. The conservation, restoration, and creations of wetlands may help support their declining populations in the Northeast

    Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging

    Get PDF
    Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease

    Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF

    Get PDF
    ABSTRACT CsrA family RNA-binding proteins are widely distributed in bacteria and regulate gene expression at the posttranscriptional level. Pseudomonas aeruginosa has a canonical member of the CsrA family (RsmA) and a novel, structurally distinct variant (RsmF). To better understand RsmF binding properties, we performed parallel systematic evolution of ligands by exponential enrichment (SELEX) experiments for RsmA and RsmF. The initial target library consisted of 62-nucleotide (nt) RNA transcripts with central cores randomized at 15 sequential positions. Most targets selected by RsmA and RsmF were the expected size and shared a common consensus sequence (CANGGAYG) that was positioned in a hexaloop region of the stem-loop structure. RsmA and RsmF also selected for longer targets (≄96 nt) that were likely generated by rare PCR errors. Most of the long targets contained two consensus-binding sites. Representative short (single consensus site) and long (two consensus sites) targets were tested for RsmA and RsmF binding. Whereas RsmA bound the short targets with high affinity, RsmF was unable to bind the same targets. RsmA and RsmF both bound the long targets. Mutation of either consensus GGA site in the long targets reduced or eliminated RsmF binding, suggesting a requirement for two tandem binding sites. Conversely, RsmA bound long targets containing only a single GGA site with unaltered affinity. The RsmF requirement for two binding sites was confirmed with tssA1 , an in vivo regulatory target of RsmA and RsmF. Our findings suggest that RsmF binding requires two GGA-containing sites, while RsmA binding requirements are less stringent. IMPORTANCE The CsrA family of RNA-binding proteins is widely conserved in bacteria and plays important roles in the posttranscriptional regulation of protein synthesis. P. aeruginosa has two CsrA proteins, RsmA and RsmF. Although RsmA and RsmF share a few RNA targets, RsmF is unable to bind to other targets recognized by RsmA. The goal of the present study was to better understand the basis for differential binding by RsmF. Our data indicate that RsmF binding requires target RNAs with two consensus-binding sites, while RsmA recognizes targets with just a single binding site. This information should prove useful to future efforts to define the RsmF regulon and its contribution to P. aeruginosa physiology and virulence

    Vfr Directly Activates exsA Transcription To Regulate Expression of the Pseudomonas aeruginosa Type III Secretion System

    Get PDF
    ABSTRACT The Pseudomonas aeruginosa cyclic AMP (cAMP)-Vfr system (CVS) is a global regulator of virulence gene expression. Regulatory targets include type IV pili, secreted proteases, and the type III secretion system (T3SS). The mechanism by which CVS regulates T3SS gene expression remains undefined. Single-cell expression studies previously found that only a portion of the cells within a population express the T3SS under inducing conditions, a property known as bistability. We now report that bistability is altered in a vfr mutant, wherein a substantially smaller fraction of the cells express the T3SS relative to the parental strain. Since bistability usually involves positive-feedback loops, we tested the hypothesis that virulence factor regulator (Vfr) regulates the expression of exsA . ExsA is the central regulator of T3SS gene expression and autoregulates its own expression. Although exsA is the last gene of the exsCEBA polycistronic mRNA, we demonstrate that Vfr directly activates exsA transcription from a second promoter (P exsA ) located immediately upstream of exsA . P exsA promoter activity is entirely Vfr dependent. Direct binding of Vfr to a P exsA promoter probe was demonstrated by electrophoretic mobility shift assays, and DNase I footprinting revealed an area of protection that coincides with a putative Vfr consensus-binding site. Mutagenesis of that site disrupted Vfr binding and P exsA promoter activity. We conclude that Vfr contributes to T3SS gene expression through activation of the P exsA promoter, which is internal to the previously characterized exsCEBA operon. IMPORTANCE Vfr is a cAMP-dependent DNA-binding protein that functions as a global regulator of virulence gene expression in Pseudomonas aeruginosa . Regulation by Vfr allows for the coordinate production of related virulence functions, such as type IV pili and type III secretion, required for adherence to and intoxication of host cells, respectively. Although the molecular mechanism of Vfr regulation has been defined for many target genes, a direct link between Vfr and T3SS gene expression had not been established. In the present study, we report that Vfr directly controls exsA transcription, the master regulator of T3SS gene expression, from a newly identified promoter located immediately upstream of exsA

    MAP3K4 Controls the Chromatin Modifier HDAC6 during Trophoblast Stem Cell Epithelial-to-Mesenchymal Transition

    Get PDF
    The first epithelial-to-mesenchymal transition (EMT) occurs in trophoblast stem (TS) cells during implantation. Inactivation of the serine/threonine kinase MAP3K4 in TS cells (TSKI4 cells) induces an intermediate state of EMT, where cells retain stemness, lose epithelial markers, and gain mesenchymal characteristics. Investigation of relationships among MAP3K4 activity, stemness, and EMT in TS cells may reveal key regulators of EMT. Here, we show that MAP3K4 activity controls EMT through the ubiquitination and degradation of HDAC6. Loss of MAP3K4 activity in TSKI4 cells results in elevated HDAC6 expression and the deacetylation of cytoplasmic and nuclear targets. In the nucleus, HDAC6 deacetylates the promoters of tight junction genes, promoting the dissolution of tight junctions. Importantly, HDAC6 knockdown in TSKI4 cells restores epithelial features, including cell-cell adhesion and barrier formation. These data define a role for HDAC6 in regulating gene expression during transitions between epithelial and mesenchymal phenotypes

    Invited review : Selective use of antimicrobials in dairy cattle at drying-off

    Get PDF
    Administering intramammary antimicrobials to all mammary quarters of dairy cows at drying-off [i.e., blanket dry cow therapy (BDCT)] has been a mainstay of mastitis prevention and control. However, as udder health has considerably improved over recent decades with reductions in intramammary infection prevalence at drying-off and the introduction of teat sealants, BDCT may no longer be necessary on all dairy farms, thereby supporting antimicrobial stewardship efforts. This narrative review summarizes available literature regarding current dry cow therapy practices and associ-ated impacts of selective dry cow therapy (SDCT) on udder health, milk production, economics, antimicro-bial use, and antimicrobial resistance. Various methods to identify infections at drying-off that could benefit from antimicrobial treatment are described for select-ing cows or mammary quarters for treatment, includ-ing utilizing somatic cell count thresholds, pathogen identification, previous clinical mastitis history, or a combination of criteria. Selection methods may be enacted at the herd, cow, or quarter levels. Producers' and veterinarians' motivations for antimicrobial use are discussed. Based on review findings, SDCT can be ad-opted without negative consequences for udder health and milk production, and concurrent teat sealant use is recommended, especially in udder quarters receiving no intramammary antimicrobials. Furthermore, herd selection should be considered for SDCT implementa-tion in addition to cow or quarter selection, as BDCT may still be temporarily necessary in some herds for optimal mastitis control. Costs and benefits of SDCT vary among herds, whereas impacts on antimicrobial resistance remain unclear. In summary, SDCT is a vi-able management option for maintaining udder health and milk production while improving antimicrobial stewardship in the dairy industry.Peer reviewe

    Invited review : Selective use of antimicrobials in dairy cattle at drying-off

    Get PDF
    Administering intramammary antimicrobials to all mammary quarters of dairy cows at drying-off [i.e., blanket dry cow therapy (BDCT)] has been a mainstay of mastitis prevention and control. However, as udder health has considerably improved over recent decades with reductions in intramammary infection prevalence at drying-off and the introduction of teat sealants, BDCT may no longer be necessary on all dairy farms, thereby supporting antimicrobial stewardship efforts. This narrative review summarizes available literature regarding current dry cow therapy practices and associ-ated impacts of selective dry cow therapy (SDCT) on udder health, milk production, economics, antimicro-bial use, and antimicrobial resistance. Various methods to identify infections at drying-off that could benefit from antimicrobial treatment are described for select-ing cows or mammary quarters for treatment, includ-ing utilizing somatic cell count thresholds, pathogen identification, previous clinical mastitis history, or a combination of criteria. Selection methods may be enacted at the herd, cow, or quarter levels. Producers' and veterinarians' motivations for antimicrobial use are discussed. Based on review findings, SDCT can be ad-opted without negative consequences for udder health and milk production, and concurrent teat sealant use is recommended, especially in udder quarters receiving no intramammary antimicrobials. Furthermore, herd selection should be considered for SDCT implementa-tion in addition to cow or quarter selection, as BDCT may still be temporarily necessary in some herds for optimal mastitis control. Costs and benefits of SDCT vary among herds, whereas impacts on antimicrobial resistance remain unclear. In summary, SDCT is a vi-able management option for maintaining udder health and milk production while improving antimicrobial stewardship in the dairy industry.Peer reviewe

    SoTL Lab: Undergraduate student-faculty collaborative research in teaching and learning in CSD

    Get PDF
    The University of Wisconsin-Eau Claire Communication Sciences and Disorders SoTL Lab was designed to provide hands-on research experiences to undergraduate students on a large scale. Student reflections on experiences within the SoTL Lab identify the value of collaboration, development of confidence, and exposure to the entire research process as key outcomes. These experiences foster development of research skills and may lead students to consider academic careers

    Invited review: Selective treatment of clinical mastitis in dairy cattle

    Get PDF
    Treatment of clinical mastitis (CM) and use of antimicrobials for dry cow therapy are responsible for the majority of animal-defined daily doses of antimicrobial use (AMU) on dairy farms. However, advancements made in the last decade have enabled excluding nonsevere CM cases from antimicrobial treatment that have a high probability of cure without antimicrobials (no bacterial causes or gram-negative, excluding Klebsiella spp.) and cases with a low bacteriological cure rate (chronic cases). These advancements include availability of rapid diagnostic tests and improved udder health management practices, which reduced the incidence and infection pressure of contagious CM pathogens. This review informed an evidence-based protocol for selective CM treatment decisions based on a combination of rapid diagnostic test results, review of somatic cell count and CM records, and elucidated consequences in terms of udder health, AMU, and farm economics. Relatively fast identification of the causative agent is the most important factor in selective CM treatment protocols. Many reported studies did not indicate detrimental udder health consequences (e.g., reduced clinical or bacteriological cures, increased somatic cell count, increased culling rate, or increased recurrence of CM later in lactation) after initiating selective CM treatment protocols using on-farm testing. The magnitude of AMU reduction following a selective CM treatment protocol implementation depended on the causal pathogen distribution and protocol characteristics. Uptake of selective treatment of nonsevere CM cases differs across regions and is dependent on management systems and adoption of udder health programs. No economic losses or animal welfare issues are expected when adopting a selective versus blanket CM treatment protocol. Therefore, selective CM treatment of nonsevere cases can be a practical tool to aid AMU reduction on dairy farms
    corecore