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ABSTRACT

The Pseudomonas aeruginosa cyclic AMP (cAMP)-Vfr system (CVS) is a global regulator of virulence gene expression. Regula-
tory targets include type IV pili, secreted proteases, and the type III secretion system (T3SS). The mechanism by which CVS regu-
lates T3SS gene expression remains undefined. Single-cell expression studies previously found that only a portion of the cells
within a population express the T3SS under inducing conditions, a property known as bistability. We now report that bistability
is altered in a vfr mutant, wherein a substantially smaller fraction of the cells express the T3SS relative to the parental strain.
Since bistability usually involves positive-feedback loops, we tested the hypothesis that virulence factor regulator (Vfr) regulates
the expression of exsA. ExsA is the central regulator of T3SS gene expression and autoregulates its own expression. Although
exsA is the last gene of the exsCEBA polycistronic mRNA, we demonstrate that Vfr directly activates exsA transcription from a
second promoter (PexsA) located immediately upstream of exsA. PexsA promoter activity is entirely Vfr dependent. Direct binding
of Vfr to a PexsA promoter probe was demonstrated by electrophoretic mobility shift assays, and DNase I footprinting revealed an
area of protection that coincides with a putative Vfr consensus-binding site. Mutagenesis of that site disrupted Vfr binding and
PexsA promoter activity. We conclude that Vfr contributes to T3SS gene expression through activation of the PexsA promoter,
which is internal to the previously characterized exsCEBA operon.

IMPORTANCE

Vfr is a cAMP-dependent DNA-binding protein that functions as a global regulator of virulence gene expression in Pseudomonas
aeruginosa. Regulation by Vfr allows for the coordinate production of related virulence functions, such as type IV pili and type
III secretion, required for adherence to and intoxication of host cells, respectively. Although the molecular mechanism of Vfr
regulation has been defined for many target genes, a direct link between Vfr and T3SS gene expression had not been established.
In the present study, we report that Vfr directly controls exsA transcription, the master regulator of T3SS gene expression, from
a newly identified promoter located immediately upstream of exsA.

Pseudomonas aeruginosa is an environmental bacterium typi-
cally found in soil and water. The organism is also an impor-

tant opportunistic pathogen of humans, especially in those with
neutropenia, severe burns, and cystic fibrosis (1, 2). Both the
physical and host environments expose P. aeruginosa to unique
stresses that challenge survival. Reprogramming gene expression
is critical for adaptation. The host signals to which the bacteria
respond are not entirely clear but likely include contact with host
cell surfaces or host-derived macromolecules, temperature, os-
molarity, pH, iron limitation, and oxidative stress (3–5). Bacterial
genes induced within mammalian hosts include those important
for iron acquisition, carbon utilization, and virulence factors, such
as type IV pili, Xcp, and Hxc type II secretion systems, secreted
factors (e.g., exotoxin A, protease IV, and elastase), and a type III
secretion system (T3SS) (3, 5–8). Many of these virulence factors
are directly controlled by the cyclic AMP (cAMP)-Vfr signaling
(CVS) system (9, 10). The CVS pathway is a global regulatory
system consisting of the CyaA and CyaB adenylate cyclases, the
CpdA phosphodiesterase, and the virulence factor regulator (Vfr)
transcription factor (10). Intracellular cAMP is generated by CyaA
and CyaB in response to poorly defined environmental signals (9),
and cAMP homeostasis is maintained by the CpdA phosphodies-
terase (11). Vfr is a DNA-binding protein of the Escherichia coli
Crp family (12) and responds directly to increased intracellular

pools of cAMP to activate expression of the CVS regulon (11, 13,
14). Vfr binds to a well-characterized consensus site (5=-ANWW
TGNGAWNYAGWTCACAT) within target promoters (13). Di-
rect binding of Vfr to the promoter regions of many virulence
factors has been demonstrated or can be inferred by the presence
of a consensus-binding site (10). One noted exception, however, is
the T3SS. Although Vfr was previously shown to regulate the T3SS
(9), a mechanism has not been described, and none of the known
promoter regions for T3SS genes contains a Vfr consensus-bind-
ing site.
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The P. aeruginosa T3SS is an important virulence determinant
known to contribute to acute virulence phenotypes, such as
phagocytic avoidance, cytotoxicity, and systemic spread of P.
aeruginosa from initial sites of colonization (15). The T3SS is a
multiprotein complex that forms a needle-like injectisome struc-
ture. The injectisome functions by translocating effector proteins
produced within the bacterial cytoplasm into host cells, where
they have antihost effects that include modulation of signal trans-
duction, actin dynamics, inflammation, and cell death pathways
(15). The primary regulator of T3SS gene expression is the DNA-
binding protein ExsA (16, 17). T3SS genes are organized into 10
transcriptional units, each of which is controlled by an ExsA-de-
pendent promoter (18). ExsA is encoded as the last gene of the
exsCEBA operon and autoregulates its own transcription through
direct activation of the PexsC promoter (19). T3SS gene expression
is intimately coupled to secretory activity by a partner-switching
mechanism (18, 20). The partner-switching mechanism controls
the DNA-binding activity of ExsA and requires three additional
proteins (ExsD, ExsC, and ExsE). ExsD is an antiactivator that
directly interacts with ExsA to inhibit DNA-binding activity (21).
ExsC functions as both an anti-antiactivator by binding to ExsD
and as a chaperone for ExsE, a secreted substrate of the T3SS (22).
Type III secretory activity serves as a sensor of environmental
conditions and regulates the partner-switching mechanism. In
nonpermissive environments (high calcium or the absence of host
cells), the secretion system is assembled but inactive (21, 23).
These conditions favor formation of the ExsA-ExsD and ExsC-
ExsE complexes, and T3SS gene expression is low (21, 22, 24–27).
Inducing signals, which include low environmental Ca2� and
contact with host cells, convert the secretion system into an active
conformation, leading to secretion of ExsE (25, 26, 28). The cor-
responding decrease in the intracellular concentration of ExsE
triggers partner switching, wherein ExsC preferentially binds to
ExsD and allows free ExsA to activate T3SS gene expression.

The P. aeruginosa T3SS is expressed in only a subset of cells,
resulting in a property known as bistability (23, 28, 29). Observed
at the single-cell level, bistability occurs when there is nonhomo-
geneous gene expression within a cell population. The mechanism
of bistability usually involves regulatory feedback loops (30).
Feedback loops that may contribute to bistable expression of the
T3SS include ExsA autoregulation of its own expression (19) and
the partner-switching mechanism that controls ExsA activity (18).
In the present study, we report that the bistable phenotype is
altered in a vfr mutant wherein a smaller percentage of cells are
induced for T3SS gene expression than in the parental strain.
We identified a Vfr-dependent promoter (PexsA), located im-
mediately upstream of exsA, that appears to be critical for T3SS
gene expression. The PexsA promoter region contains a Vfr con-
sensus-binding site, and footprinting and binding studies con-
firmed that Vfr interacts with the PexsA promoter region.
Mutagenesis of the Vfr binding site on the chromosome signif-
icantly reduced T3SS gene expression. Unexpectedly, disruption
of the Vfr binding site on the chromosome resulted in a larger
defect in T3SS gene expression than that in the vfr mutant. We
conclude that Vfr regulates T3SS gene expression through its ef-
fects on PexsA promoter activity but cannot exclude the possibility
that additional Vfr-controlled functions also contribute to T3SS
gene expression.

MATERIALS AND METHODS
Bacterial strains, culture conditions, and sample preparation. The bac-
terial strains used in this study are provided in Table S1 in the supplemen-
tal material. Escherichia coli DH5� was used for general cloning and main-
tained on Luria-Bertani (LB) agar plates with gentamicin (15 �g/ml),
tetracycline (12 �g/ml), or ampicillin (100 �g/ml), as appropriate. E. coli
strain Tuner (DE3) was maintained on LB agar with ampicillin (100 �g/
ml). P. aeruginosa PA103 strains were maintained on Vogel-Bonner min-
imal (VBM) medium with gentamicin (100 �g/ml) as necessary.

Plasmid and strain construction. The allelic exchange vector, re-
porter fusions, plasmids, and primers used in their construction are listed
in Tables S1 and S2, respectively, in the supplemental material. To gener-
ate the Vfr binding site mutant (BSM) in the PexsA promoter region, two
overlapping PCR fragments containing upstream and downstream se-
quences flanking PexsA and the desired Vfr binding site mutations (primer
pairs 129092160-129781385 and 129781384-129092161) were amplified
and joined with pEXG2Tc (digested with HindIII and SacI) in a Gibson
assembly reaction (New England BioLabs). The resulting construct
(pEXG2Tc PexsA VBM) was conjugated from E. coli SM10 into the wild-
type (wt) PA103 strain, and plasmid integrants were selected on VBM agar
with tetracycline (50 �g/ml). Merodiploids were resolved by plating on
YT agar (0.5% yeast extract and 1% tryptone) with 5% sucrose. Successful
integration of PexsA Vfr binding site mutations was confirmed by PCR
amplification and sequencing. The PexsA and PexsAm reporter fusions were
constructed as follows: the region containing �193 to �18 (relative to the
exsA transcriptional start site previously mapped by transcriptome se-
quencing [RNA-seq] [4]) was PCR amplified from the wt PA103 strain or
the PA103 PexsA VBM mutant (primer pair 126323955-126639110) and
joined with the mini-CTX-lacZ vector (precut with EcoRI and BamHI) by
incubation in a Gibson assembly reaction (New England BioLabs). Re-
porter constructs were integrated at the attB site of PA103, as previously
described (31). The PexsD-gfp reporter fusion was constructed by transfer-
ring the PexsD promoter region as an EcoRI-HindIII restriction fragment
from mini-CTX-PexsD-lacZ to the corresponding sites in pJNE05. The
PlacP1-gfp reporter fusion was cloned as a lacP1 gBlock into EcoRI-HindIII-
digested pJNE05 by Gibson assembly.

Transcriptional reporter assays. P. aeruginosa strains were grown
overnight at 37°C on VBM plates with appropriate antibiotics. The fol-
lowing day, cultures were diluted to an A600 of 0.1 in Trypticase soy broth
(TSB) with EGTA (2 mM), as described in the figure legends. Cultures
were incubated at 37°C with shaking, and samples were harvested when
the culture A600 reached 1.0. The �-galactosidase activity was assayed with
the substrate ortho-nitrophenyl-galactopyranoside (ONPG), as previously
described (22), or chlorophenol red-�-D-galactopyranoside (CPRG). CPRG
activity was determined by measuring product formation at 578 nM and
using an adaptation of the Miller equation, as follows: CPRG units �
[A578/culture A600/time (min)/culture volume (ml)] � 1,000. CPRG and
Miller units are reported as the averages of the results of at least three
independent experiments, with error bars representing the standard error
of the mean (SEM). Statistical significance was determined by one-way
analysis of variance (ANOVA) using Graphpad Prism version 5.0c for
Mac OS X (GraphPad Software, La Jolla, CA).

Flow cytometry. P. aeruginosa strains carrying green fluorescent pro-
tein (GFP) transcriptional reporters (PexoS-gfp or PexsD-gfp) were cultured
overnight in TSB with gentamicin (100 �g/ml) at 37°C. The next day,
bacteria were diluted to an A600 of 0.05 in TSB with EGTA (2 mM) and
cultured at 30 or 37°C with shaking. At the indicated times, cells were
collected and diluted to 1 � 107 CFU/ml in phosphate-buffered saline
(PBS), and GFP fluorescence was measured by counting 10,000 bacteria
per sample on a Becton Dickinson LSR II at the University of Iowa Flow
Cytometry Facility.

Electrophoretic mobility shift and DNase I protection assays.
Probes for the exsA (255 bp), pscF (160 bp), exsC (200 bp), regA (275 bp),
and algD (160 bp) promoter or coding regions were amplified by PCR
using primer pairs 126323955-126639110, 32179291-3349133, 22963127-
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49188917, 33075941-33075940, and 85333731-85333730, respectively.
The PCR products were end labeled with 10 �Ci of [	-32P]ATP, as previ-
ously described (16). Vfr, apo-Vfr, and ExsAHis were purified as previ-
ously described (11, 13, 16). Electrophoretic mobility shift assay (EMSA)
reaction mixtures containing specific and nonspecific probes (0.05 nM),
ExsA DNA binding buffer (10 mM Tris [pH 7.5], 50 mM KCl, 1 mM
EDTA, 1 mM dithiothreitol, 5% glycerol), 25 ng/�l poly(2=-deoxyinos-
inic-2=-deoxycytidylic acid), and 100 �g/ml bovine serum albumin were
incubated in a total volume of 18 �l for 5 min at 25°C. Where specified,
cyclic AMP (cAMP; Sigma-Aldrich) was added to a final concentration of
200 nM. Vfr-cAMP, apo-Vfr, or ExsA (concentrations indicated in the
figure legends) was added to a total volume of 20 �l and incubated for an
additional 15 min at 25°C. Samples were analyzed by electrophoresis on
5% polyacrylamide glycine gels (10 mM Tris [pH 7.5], 380 mM glycine, 1
mM EDTA) at 4°C. Imaging was performed using an FLA-7000 phos-
phorimager (Fujifilm) and MultiGauge v3.0 software (Fujifilm).

The PexsA footprinting probe (237 bp) was generated by PCR amplifi-
cation with primer pair 129588340-126639110. The 129588340 primer
was 5=-end modified with Amino Modifier C6 (Integrated DNA Technol-
ogies) to prevent radiolabeling at that end of the promoter probe. Vfr-
mediated protection of PexsA from DNase I cleavage and DNA sequencing
reactions were performed as previously described (16).

mRNA collection and 5= RACE. P. aeruginosa strains were grown
overnight on VBM at 37°C. The following day, the bacteria were diluted to
an A600 of 0.1 in TSB with EGTA (2 mM) and cultured at 37°C with
shaking. RNA was isolated from 500-�l aliquots of cell culture using
RNAprotect cell reagent (Qiagen) and the RNeasy minikit (Qiagen).
cDNA was generated from the isolated RNA using SuperScript II reverse
transcriptase (Invitrogen) and primer 4373912. PCRs were performed
with primer pair 126323955-126639110. Genomic DNA and RNA sam-
ples not treated with reverse transcriptase served as positive and negative
controls, respectively, for PCR amplification of the PexsCEBA-specific frag-
ment. Rapid amplification of 5= cDNA ends (5= RACE) was performed
using the 5= RACE system (Invitrogen). First-strand cDNA synthesis was
performed using exsA primer 132712288 (as shown in Fig. 4C). The de-
oxycytidine-tailed cDNA was PCR amplified with the kit-provided
abridged anchor primer and primer 132712289. Finally, nested-PCR am-
plification with the kit-provided abridged universal amplification primer
and primer 132712290 was performed, and the resulting product was
sequenced (at the Iowa Institute of Human Genetics).

RESULTS
The bistable phenotype for T3SS gene expression is altered in a
vfr deletion mutant. The promoter regions for the ExoS effector
and the ExsD antiactivator genes (PexoS and PexsD, respectively) are
representative ExsA-dependent promoters. Previous studies
found expression of PexoS-lacZ andPexsD-lacZ transcriptional report-
ers to be entirely dependent upon exsA and reduced 
8-fold in the
absence of vfr compared to the parental strain PA103 (Fig. 1A)
(24). A limitation of lacZ reporters is that the measured activity
represents the average of the entire cell population. This can ob-
scure differences in reporter activity occurring at the single-cell
level. Previous studies using the green fluorescent protein as a
transcriptional readout of single-cell activity found that T3SS gene
expression is bistable (23, 28, 29). Bistability results from nonho-
mogeneous gene expression within a cell population (30). To bet-
ter understand the kinetics of T3SS gene expression at the single-
cell level, we grew broth cultures of wt, exsA, and vfr strains
carrying either a PexoS-gfp or PexsD-gfp transcriptional reporter over-
night under nonpermissive conditions (high Ca2�, without
EGTA) for T3SS gene expression. Flow cytometry verified that the
uninduced reporter strains had low levels of fluorescence (data
not shown, although evident at the 1-h time point in Fig. 3A). The

cells were then diluted to an A600 of 0.05 and cultured under in-
ducing conditions for T3SS gene expression (low Ca2�, with
EGTA) at 37°C, and samples were harvested every hour and ex-
amined by flow cytometry. The exsA mutant cells had low levels of
PexoS-gfp and PexsD-gfp reporter activity following 5 h of growth (Fig.
2A and B), chosen as a representative time point, and activity
remained low throughout the time course (Fig. 3A). In contrast,
the wt and vfr mutant cells had two distinct peaks of PexoS-gfp and
PexsD-gfp reporter activity (Fig. 2C to F) at the 5-h time point. The
first peak (coincident with the peak seen with the exsA mutant)
represented cells with low reporter activity, and the higher-inten-
sity peak represented cells with high reporter activity. Time course
experiments demonstrated that the kinetic induction of both re-
porters was delayed in the vfr mutant compared to the wt strain
(Fig. 3A). Further examination revealed that the vfr mutant had
two observable defects in PexoS-gfp andPexsD-gfp reporter activities.
First, the fluorescence intensity of the induced vfr mutant cells
(Fig. 2E and F) was 2- to 4-fold lower than the intensity seen with
the wt cells (Fig. 2C and D). Second, a smaller percentage of the vfr
mutant cells demonstrated fluorescence over the time course (Fig.
3A and B). These findings demonstrate that the bistable pheno-
type is altered in the absence of vfr.

We also examined the effect of temperature on expression of
the PexoS-gfp orPexsD-gfp reporters by comparing cells grown at 30°C
or 37°C for 5 h under permissive conditions for T3SS gene expres-
sion. Although most of the wt cells were positive for GFP expres-
sion when cultured at 37°C, only �30% were positive when grown
at 30°C (Fig. 3). A similar trend was seen with the vfr mutant, in
that more GFP-positive cells were observed at 37°C than at 30°C.
We concluded that the requirement for vfr is more stringent for
cells grown at 30°C.

Bistability generally involves positive feedback regulation (30).
One candidate regulator for bistable control of T3SS gene expres-
sion is Vfr itself, which directly autoregulates its own expression
(13). To determine whether the Vfr regulon is subject to bistable
expression, we constructed a PlacP1-gfp reporter. The PlacP1 reporter
was previously shown to be Vfr dependent and a reliable surrogate
for expression of the Vfr regulon (32). When assayed in the wt and
vfr strains, however, the fluorescence intensity was uniform, sug-
gesting that the Vfr regulon is not expressed in a bistable manner
(see Fig. S1 in the supplemental material).

FIG 1 Vfr is required for maximal T3SS gene expression. (A) P. aeruginosa
strains PA103 (wt), PA103 exsA::� (exsA), and PA103 
vfr (vfr) carrying chro-
mosomally integrated PexoS-lacZ or PexsD-lacZ transcriptional reporters were
grown under inducing conditions (low Ca2�, with EGTA) for T3SS gene ex-
pression at 37°C to an A600 of 1.0 and assayed for �-galactosidase activity. The
reported values (Miller units) are the means of the results of at least three
experiments. *, P � 0.0001, compared to PexoS-lacZ activity in the wt strain; **,
P � 0.0001, compared to PexsD-lacZ activity in the wt strain.
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Another potential role for Vfr in bistability could be a direct
effect on exsA expression, which is controlled by the ExsA-depen-
dent PexsC promoter. To test this possibility, we generated a radio-
labeled PexsC promoter probe and tested for Vfr binding in an
EMSA experiment. Although purified Vfr bound to the previously
characterized promoter region for regA (33) (see lanes 11 to 13 in
Fig. S2A in the supplemental material), binding to the PexsC probe
was not detected (see lanes 1 to 4 in Fig. S2A). We also considered
the possibility that Vfr requires ExsA for binding. Whereas ExsA-

His bound to the PexsC promoter probe, further addition of Vfr had
no effect on ExsAHis binding activity (see lanes 5 to 8 in Fig. S2).
We concluded that Vfr does not regulate T3SS gene expression
through direct effects on PexsC promoter activity.

Identification of the PexsA promoter. A recent RNA-seq study
of P. aeruginosa strain PA14 grown at 37°C identified a transcript

with a 5= triphosphate originating in the exsB-exsA intergenic re-
gion (IR) (4). Prior to that finding, no promoters were known to
exist in the IR. To independently verify the RNA-seq finding, we
performed 5= RACE with RNA isolated from strain PA103 cul-
tured under inducing conditions for T3SS gene expression and
identified the same transcriptional start site to within 2 nucleo-
tides of the previous report (Fig. 4A and B). No additional start
sites were mapped within the IR, suggesting that the region
contains a single promoter (designated herein as PexsA). The
region upstream of the transcription start site has several pu-
tative �10 TATAAT boxes but lacks an obvious �35 box (Fig.
4B), suggesting a potential requirement for a transcriptional
activator. In support of that conclusion, we found a strong
match to the Vfr consensus-binding site that was centered at
the �41 position (Fig. 4B).

FIG 2 T3SS gene expression is bistable. (A through F) wt strain PA103 (C and D), the exsA mutant (A and B), and the vfr mutant (E and F) carrying either the
PexoS-gfp (A, C, and E) or PexsD-gfp (B, D, and F) transcriptional reporter were cultured under inducing conditions at 37°C for 5 h and examined for GFP expression
at the single-cell level by flow cytometry. The reported values are the relative numbers of cells (events on the y axis) at each level of GFP fluorescence as shown
on the x axis. Horizontal bars indicate the fluorescence intensities gated as negative and positive for GFP fluorescence. The peak GFP fluorescence for the wt strain
(indicated with an arrow in panels C and D) is also shown for reference for the vfr mutant (in panels E and F). The reported data are from a representative
experiment.
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To determine whether the PexsA promoter is controlled by Vfr,
a transcriptional reporter (PexsA-lacZ, �193 to �18 region relative
to the PexsA transcription start site [Fig. 4A]) was introduced into
wt cells and the vfr mutant. Weak PexsA-lacZ reporter activity was
observed in the wt background (Fig. 5A), and that activity was
significantly reduced in the vfr deletion mutant. PexsA-lacZ reporter
activities were similar under both noninducing and inducing con-
ditions for T3SS gene expression. Because PexsA-lacZ reporter activ-
ity was low, we included an additional reporter lacking a cloned
promoter and found that both the promoterless and PexsA-lacZ re-
porters had similar activities in the vfr mutant (Fig. 5A). Exoge-
nous expression of vfr from a plasmid stimulated PexsA-lacZ re-

porter activity in both the wt and vfr backgrounds to levels higher
than those seen in the wt strain carrying a vector control (Fig. 5B).
This finding suggests that Vfr activity is limiting in wt cells. These
combined data suggest that PexsA reporter activity is entirely Vfr
dependent and is not influenced by the addition of EGTA to the
growth medium (T3SS-inducing conditions).

PexsA promoter activity is not subject to autoregulatory con-
trol by ExsA. Previous studies concluded that ExsA autoregulates
its own expression through activation of the PexsC promoter and
generation of a polycistronic mRNA for exsCEBA (Fig. 4A) (19).
The discovery of the PexsA promoter raised the possibility that the
transcript originating from the PexsC promoter terminates prior to
reaching exsA and that exsA transcription is driven entirely from
the PexsA promoter. To test this possibility, we isolated RNA from
wt and exsA mutant cells, generated cDNA, and performed a PCR
using the primers outlined in Fig. 4C. The PCR primers were
positioned upstream and downstream of the PexsA transcription
start site and should only have yielded a 255-bp product from
transcripts originating upstream of PexsA. The expected product
was detected by PCR when using RNA isolated from wt cells but
not from the exsA mutant cells (Fig. 6). These findings are consis-
tent with previous data concluding that exsCEBA are transcribed
as an operon from the ExsA-dependent PexsC promoter. Neverthe-
less, it seemed possible that ExsA also influences PexsA promoter
activity as a further mechanism of autoregulation. This does not
appear to be the case, however, as PexsA-lacZ reporter activity is not
significantly altered in an exsA mutant (see Fig. S2B in the supple-
mental material) or under T3SS-inducing conditions (Fig. 5A),
and ExsA binding to the PexsA promoter probe alone or in combi-
nation with Vfr was not detected (see Fig. S2C in the supplemental
material).

Vfr directly controls PexsA promoter activity. To determine
whether Vfr controls PexsA promoter activity directly, we per-
formed EMSA experiments with a radiolabeled PexsA promoter
probe and purified Vfr. Incubation of the PexsA probe with increas-
ing amounts of Vfr resulted in dose-dependent formation of a
Vfr-PexsA promoter probe complex (Fig. 7A, lanes 3 to 8). The
apparent affinity for complex formation (apparent equilibrium
binding constant [Keq], �100 nM) is similar to those for other Vfr
interactions that have been measured previously (11). The mobil-
ity of a nonspecific probe (derived from pscF) was not altered in
the presence of Vfr, demonstrating that binding to the PexsA probe
is specific (Fig. 7A). Although the DNA binding activity of Vfr is
usually cAMP dependent, Vfr binding to the lasR promoter region
was previously shown to be cAMP independent (13). The cAMP
requirement for PexsA binding was examined using apo-Vfr, as
previously described (13). Binding of apo-Vfr to the PexsA probe
was strictly dependent upon cAMP addition (Fig. 7A, compare
lanes 9 and 10). The interaction of Vfr with the PexsA probe, there-
fore, is typical of most Vfr promoter interactions in being cAMP
dependent.

The location of the Vfr binding site in the PexsA promoter re-
gion was determined by DNase I footprinting. In the presence of
Vfr, a 24-bp area of protection was observed, and that region was
centered on the predicted Vfr consensus-binding site (Fig. 4B and
7C). Furthermore, the nucleotides located in the core of the con-
served regions demonstrated hypersensitivity to DNase I cleavage
(Fig. 7C, indicated with an asterisk). This hypersensitivity pattern
is a signature typical of Vfr binding interactions and likely results
from Vfr-induced DNA bending (11, 13).

FIG 3 The bistable phenotype for T3SS gene expression is altered in the vfr
mutant. (A) The indicated strains carrying plasmid-based PexoS-gfp or PexsD-gfp

transcriptional reporters were cultured at 37°C from an initial A600 of 0.05.
Samples were collected at the indicated times (1 to 8 h), diluted 100-fold into
PBS, subjected to flow cytometry, and gated, as shown in Fig. 2. The percentage
of cells demonstrating a positive GFP phenotype is reported for each time
point. Data reported are from a representative experiment. (B) The indicated
strains carrying plasmid-based PexoS-gfp or PexsD-gfp transcriptional reporters
were cultured at 30°C or 37°C from an initial A600 of 0.05. After 5 h, culture
aliquots were diluted 100-fold into PBS, subjected to flow cytometry, and
scored for GFP-positive cells, as indicated in Fig. 2. The reported values are the
means of the results of at least three experiments. *, P � 0.0001, when com-
paring the vfr mutant to the wt strain for each reporter and the corresponding
growth temperature.
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To further verify that Vfr interacts directly with the PexsA pro-
moter region, we generated a transcriptional reporter and a pro-
moter probe, referred to as PexsAm-lacZ and PexsAm, respectively, in
which the Vfr consensus-binding site was mutagenized, as out-
lined in Fig. 4B. PexsAm-lacZ reporter activity was the same in both
the wt and vfr mutant backgrounds and was similar to the activity
seen for the wt PexsA-lacZ reporter when measured in the vfr mutant
(Fig. 5A). In contrast to our findings with the PexsA-lacZ reporter,
PexsAm-lacZ reporter activity was not stimulated by expressing vfr
from a plasmid (Fig. 5B). Finally, binding of Vfr to the PexsAm

promoter probe could not be detected in EMSA experiments (Fig.
7B). These combined findings confirm that Vfr contributes to
T3SS gene expression through a direct binding interaction with
the PexsA promoter region. To determine whether regulation of
PexsA promoter activity by Vfr fully accounts for reduced T3SS
gene expression in the vfr deletion mutant, we introduced the
same Vfr binding site mutations depicted in Fig. 4B onto the chro-
mosome of the wt PA103 strain, resulting in strain BSM (for bind-
ing site mutant). ExsA-dependent PexoS-lacZ and PexsD-lacZ reporter
activities were examined under T3SS-inducing growth condi-
tions. Compared to the vfr mutant, the BSM strain had a repro-
ducible reduction in PexoS-lacZ activity (though it did not reach
significance) and a significant defect in PexsD-lacZ reporter activity
(Fig. 8). These findings were contrary to our expectation that the
BSM strain would phenocopy the vfr mutant. One possible expla-
nation is that the mutations used to disrupt the Vfr binding site
also interfere with the inherent basal activity of the promoter (i.e.,
Vfr-independent activity). The typical way to test this is to mea-
sure wt and mutant promoter activity in the absence of the acti-

vator (i.e., vfr). Unfortunately, the promoter is entirely devoid of
activity in the absence of vfr (Fig. 5A), making it impossible to
ascertain the effect of the mutations on inherent promoter activ-
ity. Thus, our data demonstrate that Vfr regulates T3SS gene ex-
pression through its effects on PexsA promoter activity and suggest
that an additional Vfr-controlled activity and/or an unknown
function of the exsB-exsA intergenic region also contributes to
T3SS gene expression.

DISCUSSION

The exsCEBA genes were originally characterized as an operon
transcribed from an ExsA-dependent promoter located upstream
of exsC (19). Data from two recent studies suggest that exsA tran-
scription is more complex than previously appreciated and con-
trolled by at least one additional promoter. The first study identi-
fied a transcript originating in the exsB-exsA intergenic region
using an RNA-seq approach (4), and the second identified a
VqsM-dependent promoter located in the same region (34). In the
present study, we identified and characterized a Vfr-dependent
promoter (PexsA), also located within the exsB-exsA intergenic re-
gion. In 5= RACE experiments, we identified two nucleotides as
candidate transcription start sites for the PexsA promoter (Fig. 4B).
Those nucleotides are adjacent to the start site previously mapped
by RNA-seq (4). Although it is unlikely that all three nucleotide
represent authentic start sites, we conclude that they collectively
represent the general start site for PexsA transcription initiation. In
support of this, there are several strong matches to �10 TATAAT
boxes appropriately positioned just upstream of the candidate
start sites (Fig. 4B). A start site for the VqsM-dependent promoter

FIG 4 Diagram of the 297-bp exsB-exsA intergenic (IR) region and the PexsA promoter region. (A) The promoter regions that control transcription of the
exsCEBA operon (PexsC) and exsA (PexsA) are indicated by arrows. The dashed line with arrowheads at the ends corresponds to the region used to construct the
PexsA-lacZ transcriptional reporter used in Fig. 5 and the EMSA/footprinting probes used in Fig. 6. (B) Sequence of the PexsA promoter region showing the Vfr
binding site mapped by DNase I footprinting (dashed rectangle), the match to the Vfr consensus-binding site, the nucleotide substitutions used to construct the
mutant PexsAm promoter, and the three potential �10 TATAAT boxes. The asterisk and number sign indicate the transcriptional start sites previously mapped by
RNA-seq (4) and 5= RACE in this study, respectively. (C) Strategy used to demonstrate that the transcript originating from the PexsC promoter includes exsA.
cDNA was generated from total cellular RNA using the reverse transcriptase (RT) primer (longer arrow) followed by PCR amplification using primers that
spanned the PexsA transcription start site (shorter arrows).
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was not determined in the previous study, but the VqsM binding
site was mapped by DNase I footprinting (34). The mapped bind-
ing site, however, is centered �12 bp downstream of the start sites
mapped by 5= RACE and RNA-seq. This position is inconsistent
with VqsM having a positive effect on PexsA promoter activity and
suggests that the VqsM- and Vfr-dependent promoters are dis-
tinct from one another.

Transcriptional reporter assays showed that PexsA-lacZ reporter

activity is significantly reduced in a vfr mutant compared to the
parental strain (Fig. 5A). It is important to note that PexsA

promoter activity is quite weak (�200 CPRG units). Compared
to a promoterless reporter, which served as a negative control,
PexsA-lacZ reporter activity was only �2-fold above the background
level of activity (Fig. 5A). Disruption of the Vfr binding site re-
duced PexsA-lacZ reporter activity to background levels, leading us
to conclude that PexsA promoter activity is entirely Vfr dependent.
The Vfr effect on PexsA promoter activity results from a direct
binding interaction, as determined in EMSA experiments (Fig.
6A) and DNase I cleavage assays (Fig. 6B), where Vfr protected the
�52 to �27 portion of the promoter region (Fig. 4B). Binding of
Vfr to this region of the promoter, coupled with the lack of a
strong match to a �35 consensus site, is consistent with a mech-

FIG 5 Vfr is required for PexsA promoter activity. (A and B) The wt PA103
strain and the vfr mutant carrying either a promoterless lacZ transcriptional
reporter (�), PexsA-lacZ, or PexsAm-lacZ (containing a mutated Vfr binding site)
were cultured at 37°C under noninducing (without EGTA) or inducing (with
EGTA) conditions for T3SS gene expression and assayed for �-galactosidase
activity. The experiments shown in panel B were conducted in the same man-
ner under inducing conditions (with EGTA) but included a vector control (V)
or a vfr expression vector (vfr). Arabinose (0.1%) was added to these cultures to
induce vfr expression from the plasmids. Strains carrying the promoterless
reporter were used to determine the background level of activity (indicated by
the horizontal dashed lines). �-Galactosidase activity was measured using the
fluorescent CPRG substrate. The indicated statistical differences (in panels A
and B) are relative to the wt strain carrying the PexsA-lacZ reporter; *, P � 0.01.

FIG 6 The transcript originating from the PexsC promoter contains exsA.
mRNA prepared from wt PA103 and the exsA mutant grown under inducing
conditions (2 mM EGTA) for T3SS gene expression was converted to cDNA
with reverse transcriptase, as shown in Fig. 4C. Primers were used to generate
a 255-bp product that spanned the PexsA transcription start site. Genomic DNA
(gDNA) served as a positive control for the PCR amplification, and samples
that were not treated with reverse transcriptase served as a negative control.
MWM, DNA molecular size markers in base pairs.

FIG 7 Vfr directly interacts with the PexsA promoter. (A and B) Vfr or apo-Vfr
was incubated with radiolabeled PexsA (A) or PexsAm (B) promoter probes and a
nonspecific probe (pscF) for 15 min at 25°C. cAMP was added to the indicated
samples (A) or to all of the samples (B). Arrows indicate the positions of
unbound PexsA (A) and PexsAm (B) probes, the nonspecific pscF probe, and the
Vfr-PexsA promoter probe complex. The band indicated with an asterisk rep-
resents nonspecific formation of a Vfr-pscF complex when using 
100 nM Vfr.
(C) DNase I footprint of the PexsA promoter region by Vfr (2-fold dilutions
from 400 to 25 nM). The protected region (outlined with a dashed rectangle)
includes a Vfr consensus-binding site, the core of which is indicated in bold.
Sites hypersensitive to DNase I cleavage are indicated with asterisks. Lane 7
contains a Maxam-Gilbert A�G sequencing reaction.
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anism wherein Vfr stimulates PexsA promoter activity by assisting
in the recruitment of RNA polymerase.

Identification of the PexsA promoter prompted us to reexamine
the autoregulatory properties of ExsA. Although ExsA-dependent
control of the PexsC promoter has been well established (16, 19),
evidence that the transcript originating from the PexsC promoter
includes exsA was lacking. Using a PCR approach, we identified a
signal for an mRNA species that minimally spanned the PexsA tran-
scription start site and included exsA (Fig. 4C and 7). Consistent
with previous reports that ExsA autoregulates its own expression,
the mRNA was not detected in an exsA mutant. We took this as
further evidence that exsA is included on a transcript originating
upstream of the PexsA promoter. Because no additional start sites
were detected within the exsCEB coding regions in the previous
RNA-seq experiment (4), the transcript likely is derived from the
PexsC promoter. Binding of ExsA to PexsA promoter probe was not
detected, and PexsA-lacZ reporter activity was not significantly al-
tered in an exsA mutant. The relative contribution of PexsA to the
absolute level of exsA transcript is not entirely clear, but given the
weak expression of PexsA-lacZ relative to the PexsC-lacZ reporter, a
difference of at least 20-fold (data not shown), we propose that
most exsA-containing mRNA in the cell is derived from the PexsC

promoter. Taken together, these data further support the model
that ExsA autoregulates its own expression solely through activa-
tion of the PexsC promoter.

Autoregulation of exsA expression by ExsA and the control of
ExsA activity by the ExsCED regulatory cascade result in a finely
balanced regulatory mechanism. The current working model is
that ExsD prevents high levels of ExsA-dependent transcription
under noninducing conditions (21). Inherent to the system seems
to be a stochastic component wherein the negative regulatory ac-
tivity of ExsD is relieved in only a fraction of the cells under in-
ducing conditions. The latter feature likely accounts for the bi-
stable phenotype and could be altered by factors that influence the
expression, synthesis, and/or activity of ExsA. For example, fac-
tors such as osmolarity and the metabolic status of cells were pre-
viously shown to alter the bistable phenotype for T3SS gene ex-
pression (23). A key finding from the latter study was that the
percentage of cells expressing the T3SS was positively correlated
with intracellular levels of cAMP. Our findings that bistability is
altered in the vfr mutant and that Vfr controls exsA expression are
consistent with the idea that fluctuations in cAMP influence the

bistable phenotype. Bistability does not appear to be an inherent
property of Vfr-dependent control, however, because the PlacP1-gfp

reporter demonstrated uniform expression in single-cell studies
(see Fig. S1 in the supplemental material). Rather, Vfr-dependent
stimulation of exsA expression likely alters the stochastic balance
of the system, resulting in a larger proportion of wt cells than vfr
mutant cells being positive for T3SS gene expression.

Two unresolved questions remain. First, aside from altering
the bistable phenotype, vfr deletion also resulted in a 2- to 4-fold
reduction in the fluorescence intensity of the PexoS-gfp and PexsD-gfp

reporters (Fig. 2). Given the weak activity of the PexsA promoter,
we had expected that the Vfr requirement for exsA expression
would be alleviated in cells induced for T3SS gene expression (i.e.,
GFP positive) owing to ExsA-dependent expression of the ex-
sCEBA mRNA from the much stronger PexsC promoter (Fig. 4A).
The second question is why the BSM strain has a larger defect in
PexoS-lacZ and PexsD-lacZ reporter activity than the vfr mutant (Fig.
5C). Several distinct roles have now been described for the exsB-
exsA intergenic region. The region contains Vfr-and VqsM-de-
pendent promoters (34) and contributes to posttranscriptional
regulation of ExsA expression by the DeaD RNA-dependent heli-
case (35) and the small RNA binding protein RsmA (36). The
nucleotide substitutions used to disrupt the Vfr binding site,
therefore, may have also altered exsCEBA mRNA stability or post-
transcriptional effects on ExsA synthesis or may have impaired the
inherent activity of the PexsA promoter (i.e., Vfr independent).
Understanding the contributions of the exsB-exsA intergenic re-
gion to T3SS gene expression will be the subject of future studies.
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