5,696 research outputs found

    Single-qubit unitary gates by graph scattering

    Full text link
    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9n=9 vertices for which the scattering implements a single-qubit gate. As nn increases, the number of new unitary operations increases exponentially, and for n>6n>6 the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of π\pi are found.Comment: 8 pages, 7 figure

    Stratospheric General Circulation with Chemistry Model (SGCCM)

    Get PDF
    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN)

    Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    Get PDF
    Beam tests of the ANL 12 MHz Radio-Frequency Quadrupole (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV cw, enabling beam tests with A /q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged /sup 132/Xe and /sup 84/Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations. (5 refs)

    Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson\u27s Disease Off Episodes

    Get PDF
    Parkinson\u27s Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience off episodes with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of off episodes. It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of off episodes. The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD off episodes with the novel drug Opicapone, including efficacy, safety, and clinical indications

    Electron spin relaxation of N@C60 in CS2

    Full text link
    We examine the temperature dependence of the relaxation times of the molecules N@C60 and N@C70 (which comprise atomic nitrogen trapped within a carbon cage) in liquid CS2 solution. The results are inconsistent with the fluctuating zero field splitting (ZFS) mechanism, which is commonly invoked to explain electron spin relaxation for S > 1/2 spins in liquid solution, and is the mechanism postulated in the literature for these systems. Instead, we find a clear Arrhenius temperature dependence for N@C60, indicating the spin relaxation is driven primarily by an Orbach process. For the asymmetric N@C70 molecule, which has a permanent non-zero ZFS, we resolve an additional relaxation mechanism caused by the rapid reorientation of its ZFS. We also report the longest coherence time (T2) ever observed for a molecular electron spin, being 0.25 ms at 170K.Comment: 6 pages, 6 figures V2: Updated to published versio

    Analysis and tests of TF magnet insulation samples for the JET upgrade to 4 tesla

    Get PDF
    The JET Toroidal Field (TF) coils were originally designed for operation at 3.4 tesla. In order to upgrade the field to 4 tesla and thus improve the performance of the JET machine, new mechanical tests and analysis were carried out on the insulation of TF coil samples. They are aimed at investigating the mechanical properties and the status of the insulation in order to set allowable stresses and force limits. In particular since the shear stress in the insulation is strongly affected by the shear modulus of elasticity G, it is important to measure this parameter. A method for the measurement of G in glass-resin fibres, the V-notched beam method (Iosipescu method) , was applied. The particular shape of the rectangular Iosipescu V- notched sample and the particular modality of force application produce pure shear stress for a reliable measurement of the G value and of the shear strength of the insulation. The effect of temperature on these mechanical properties was also investigated. Results show higher average shear strength with lower scatter compared with previous tests on conventional rectangular samples, thus confirming the reliability of the method. Micrographic analysis of the insulation and comparison between the straight and curved regions of the magnet, where the highest stress occurs, confirm the good quality of the impregnation of the coil. Glass-resin content, void content, micros and TG measurements have been performed on different samples and correlation between the different properties of the insulation investigated. Moreover fatigue tests at different temperatures were performed and data analyzed with the cumulative damage technique, which allows for an extrapolation of the fatigue curve with less samples than the standard method. (6 refs)
    • …
    corecore