452 research outputs found

    Opioid Antagonists: Will they Solve all of the Problems Associated with Opioid Agonists?

    Get PDF
    Physicians employed in operating and emergency rooms have utilized opioid antagonist for almost half a century for the treatment of opioid overdose. The prototype antagonist remains naloxone hydrochloride, which actually received FDA approval back in 1971. Why after so many years on the market is this medication now being formulated in the form of an easy to use “auto-injector” that was designed for non-medical professionals to be able to utilize at a moment\u27s notice? Could this wonder product, being hailed as the best possible safety tool available for life threatening opioid emergencies actual make heroes out of lay people? [1]. Will marketing and providing to the family and caregivers of chronic pain patients prevent the epidemic of opioid medication related deaths of people in our country? What else can be done by physicians and the U.S. Food and Drug Administration (FDA) to reduce the unbelievable statistic of a death every 36 minutes from an opioid overdose in the United States? With upwards of 17,000 Americans dying yearly from prescription opioid overdose, accidently or intentionally via suicide& deliberate misuse, and constantly consuming more and more of these powerful painkillers-the million dollar question remaining to be answered is: will a new drug formulation device in the hands of laypeople really make a dent in this crisis that in recent years has actually surpassed car accidents as the leading cause of accidental death? [2]

    pitolisant, a novel histamine-3 receptor competitive antagonist, and inverse agonist, in the treatment of excessive daytime sleepiness in adult patients with narcolepsy

    Get PDF
    Narcolepsy is a debilitating sleep disorder that presents with excessive daytime sleepiness (EDS) and cataplexy, which is a sudden paralysis of muscle tone triggered by strong emotions such as laughing. It is also associated with many other disorders, including psychiatric disorders, neurologic illnesses, and medication side effects. Common causes of delayed and incorrect diagnoses of these conditions include lack of physician familiarity with narcolepsy symptoms and comorbidities which mask narcolepsy signs and symptoms. Current pharmacologic therapies include Modafinil and Armodafinil for EDS and sodium oxybate for cataplexy. This review discusses the epidemiology, pathophysiology, risk factors, presentation, treatment of narcolepsy, and the role of a novel drug, Pitolisant, in the treatment of EDS in adults with narcolepsy. Pitolisant is a histamine-3 receptor (H3R), competitive antagonist, and inverse agonist, acting through the histamine system to regulate wakefulness. It is a novel drug approved in August 2019 by the FDA, is not classified as a controlled substance, and is approved for use in Europe and the United States to treat EDS and cataplexy in narcolepsy. Recent phase II and III trials have shown that Pitolisant helps reduce the ESS score and cataplexy. In summary, based on comparative studies, recent evidence has shown that Pitolisant is non-inferior to Modafinil in the treatment of EDS but superior to Modafinil in reducing cataplexy

    Chronic pain treatment strategies in Parkinson’s disease

    Get PDF
    Neurological disorders, including Parkinson’s disease (PD), have increased in prevalence and are expected to further increase in the coming decades. In this regard, PD affects around 3% of the population by age 65 and up to 5% of people over the age of 85. PD is a widely described, physically and mentally disabling neurodegenerative disorder. One symptom often poorly recognized and under-treated by health care providers despite being reported as the most common non-motor symptom is the finding of chronic pain. Compared to the general population of similar age, PD patients suffer from a significantly higher level and prevalence of pain. The most common form of pain reported by Parkinson’s patients is of musculoskeletal origin. One of the most used combination drugs for PD is Levodopa-Carbidopa, a dopamine precursor that is converted to dopamine by the action of a naturally occurring enzyme called DOPA decarboxylase. Pramipexole, a D2 dopamine agonist, and apomorphine, a dopamine agonist, and Rotigotine, a dopamine receptor agonist, have showed efficacy on PD-associated pain. Other treatments that have shown efficacy in treating pain of diverse etiologies are acetaminophen, Nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) inhibitors. Opioids and opioid-like medications such as oxycodone, morphine, tramadol, and codeine are also commonly employed in treatment of chronic pain in PD. Other opioid related medications such as Tapentadol, a central-acting oral analgesic with combined opioid and noradrenergic properties, and Targinact, a combination of the opioid agonist oxycodone and the opioid antagonist naloxone have shown improvement in pain. Anticonvulsants such as gabapentin, pregabalin, lamotrigine, carbamazepine and tricyclic antidepressants (TCAs) can be trialed when attempting to manage chronic pain in PD. The selective serotonin and noradrenaline reuptake inhibitors (SNRIs) also possess pain relieving and antidepressant properties, but carry less of the risk of anticholinergic side effects seen in TCAs. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been shown in multiple studies to be effective against various types of PD associated pain symptoms. Massage therapy (MT) is one of the most common forms of complementary and alternative medicine. Studies have shown that pressure applied during MT may stimulate vagal activity, promoting reduced anxiety and pain, as well as increasing levels of serotonin. In a survey study of PD patients, rehabilitative therapy and physical therapy were rated as the most effective for pain reduction, though with only temporary relief but these studies were uncontrolled. Yoga has been studied for patients with a wide array of neurological disorders. In summary, PD pathology is thought to have a modulating effect on pain sensation, which could amplify pain. This could help explain a portion of the higher incidence of chronic pain felt by PD patients. A treatment plan can be devised that may include dopaminergic agents, acetaminophen, NSAIDs, opioids, antidepressants, physical therapies, DBS and other options discussed in this review. A thorough assessment of patient history and physical examination should be made in patients with PD so chronic pain may be managed effectively

    Chronic pain treatment strategies in Parkinson’s disease

    Get PDF
    Neurological disorders, including Parkinson’s disease (PD), have increased in prevalence and are expected to further increase in the coming decades. In this regard, PD affects around 3% of the population by age 65 and up to 5% of people over the age of 85. PD is a widely described, physically and mentally disabling neurodegenerative disorder. One symptom often poorly recognized and under-treated by health care providers despite being reported as the most common non-motor symptom is the finding of chronic pain. Compared to the general population of similar age, PD patients suffer from a significantly higher level and prevalence of pain. The most common form of pain reported by Parkinson’s patients is of musculoskeletal origin. One of the most used combination drugs for PD is Levodopa-Carbidopa, a dopamine precursor that is converted to dopamine by the action of a naturally occurring enzyme called DOPA decarboxylase. Pramipexole, a D2 dopamine agonist, and apomorphine, a dopamine agonist, and Rotigotine, a dopamine receptor agonist, have showed efficacy on PD-associated pain. Other treatments that have shown efficacy in treating pain of diverse etiologies are acetaminophen, Nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) inhibitors. Opioids and opioid-like medications such as oxycodone, morphine, tramadol, and codeine are also commonly employed in treatment of chronic pain in PD. Other opioid related medications such as Tapentadol, a central-acting oral analgesic with combined opioid and noradrenergic properties, and Targinact, a combination of the opioid agonist oxycodone and the opioid antagonist naloxone have shown improvement in pain. Anticonvulsants such as gabapentin, pregabalin, lamotrigine, carbamazepine and tricyclic antidepressants (TCAs) can be trialed when attempting to manage chronic pain in PD. The selective serotonin and noradrenaline reuptake inhibitors (SNRIs) also possess pain relieving and antidepressant properties, but carry less of the risk of anticholinergic side effects seen in TCAs. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been shown in multiple studies to be effective against various types of PD associated pain symptoms. Massage therapy (MT) is one of the most common forms of complementary and alternative medicine. Studies have shown that pressure applied during MT may stimulate vagal activity, promoting reduced anxiety and pain, as well as increasing levels of serotonin. In a survey study of PD patients, rehabilitative therapy and physical therapy were rated as the most effective for pain reduction, though with only temporary relief but these studies were uncontrolled. Yoga has been studied for patients with a wide array of neurological disorders. In summary, PD pathology is thought to have a modulating effect on pain sensation, which could amplify pain. This could help explain a portion of the higher incidence of chronic pain felt by PD patients. A treatment plan can be devised that may include dopaminergic agents, acetaminophen, NSAIDs, opioids, antidepressants, physical therapies, DBS and other options discussed in this review. A thorough assessment of patient history and physical examination should be made in patients with PD so chronic pain may be managed effectively

    Bremelanotide for Treatment of Female Hypoactive Sexual Desire

    Get PDF
    Hypoactive sexual desire disorder (HSDD) is a persistent deficiency or absence of sexual fantasies and desire resulting in significant distress or interpersonal difficulty. Women with this disorder may display a lack of motivation for sexual activity, reduced responsiveness to erotic cues, a loss of interest during sexual activity, and avoidance of situations that could lead to sexual activity. The pathophysiology of HSDD is thought to be centered around inhibitory and excitatory hormones, neurotransmitters, and specific brain anatomy. Due to the multifactorial nature of HSDD, treatment can be complex and must attempt to target the biological and psychosocial aspects of the disorder. Bremelanotide is a melanocortin receptor agonist and has been recently approved by the FDA to treat HSDD. Bremelanotide is administered intranasally or as a subcutaneous injection. The recommended dosage of bremelanotide is 1.75 mg injected subcutaneously in the abdomen or thigh at least 45 min before sexual activity. Studies showed improvements in desire, arousal, and orgasm scores when 1.75 mg of bremelanotide was administered before sexual activity compared to a placebo. Bremelanotide is a promising way to treat HSDD

    Pharmacological Advances in Opioid Therapy: A Review of the Role of Oliceridine in Pain Management

    Get PDF
    Problems with the treatment of acute pain may arise when a patient is opioid-tolerant, such as those on chronic therapy with opioids or opiate replacement therapy, those who misuse opioids, and those who are in recovery. While some of the adverse effects of opioid medications are well known, it is also important to recognize the roles of tolerance and hyperalgesia. Oliceridine can target and modulate a novel ÎĽ-receptor pathway. The G protein-biased agonism of oliceridine allows for effective re-sensitization and desensitization of the mu-opioid receptor, which decreases the formation of opioid tolerance in patients. Oliceridine has been demonstrated to be an effective and relatively safe intravenous analgesic for the treatment of postoperative pain and is generally well tolerated with a favorable side effect profile when compared to morphine. As the prevalence of pain increases, it is becoming increasingly important to find safe and effective analgesics

    Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects

    Get PDF
    Multiple sclerosis (MS) is a prevalent and debilitating neurologic condition characterized by widespread neurodegeneration and the formation of focal demyelinating plaques in the central nervous system. Current therapeutic options are complex and attempt to manage acute relapse, modify disease, and manage symptoms. Such therapies often prove insufficient alone and highlight the need for more targeted MS treatments with reduced systemic side effect profiles. Ozanimod is a novel S1P (sphingosine-1-phosphate) receptor modulator used for the treatment of clinically isolated syndrome, relapsing–remitting, and secondary progressive forms of multiple sclerosis. It selectively modulates S1P1 and S1P5 receptors to prevent autoreactive lymphocytes from entering the CNS where they can promote nerve damage and inflammation. Ozanimod was approved by the US Food and Drug Administration (US FDA) for the management of multiple sclerosis in March 2020 and has been proved to be both effective and well tolerated. Of note, ozanimod is associated with the following complications: increased risk of infections, liver injury, fetal risk, increased blood pressure, respiratory effects, macular edema, and posterior reversible encephalopathy syndrome, among others. Further investigation including head-to-head clinical trials is warranted to evaluate the efficacy of ozanimod compared with other S1P1 receptor modulators
    • …
    corecore