7,879 research outputs found

    Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators

    Full text link
    We investigate scatterer induced mode splitting in a composite microtoroidal resonator (Q ~ 10^6) fabricated by coating a silica microtoroid (Q ~ 10^7) with a thin poly(dimethylsiloxane) layer. We show that the two split modes in both coated and uncoated silica microtoroids respond in the same way to the changes in the environmental temperature. This provides a self-referencing scheme which is robust to temperature perturbations. Together with the versatile functionalities of polymer materials, mode splitting in polymer and polymer coated microresonators offers an attractive sensing platform that is robust to thermal noise.Comment: 9 pages, 3 figures, 15 reference

    Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    Full text link
    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in water. We determine the size range of particles that induces MS in a microsphere in water as a function of resonator mode volume and quality factor. The results are confirmed by the experimental observations.Comment: 4 Pages, 5 Figures, 13 Reference

    Estimation of Purcell factor from mode-splitting spectra in an optical microcavity

    Full text link
    We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength scatterers by introducing "splitting quality" Qsp, a dimensionless parameter defined as the ratio of the scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is introduced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au particles. These values are the highest Qsp and Purcell factors reported up to date.Comment: 5 Pages, 4 Figures, 12 Reference

    Controlled Manipulation of Mode Splitting in an Optical Microcavity by Two Rayleigh Scatterers

    Full text link
    We report controlled manipulation of mode splitting in an optical microresonator coupled to two nanoprobes. It is demonstrated that, by controlling the positions of the nanoprobes, the split modes can be tuned simultaneously or individually and experience crossing or anti-crossing in frequency and linewidth. A tunable transition between standing wave mode and travelling wave mode is also observed. Underlying physics is discussed by developing a two-scatterer model which can be extended to multiple scatterers. Observed rich dynamics and tunability of split modes in a single microresonator will find immediate applications in optical sensing, opto-mechanics, filters and will provide a platform to study strong light-matter interactions in two-mode cavities.Comment: 9 pages, 5 figures, 14 references. Major revision. Published version in Optics Expres

    Cooperativity and the origins of rapid, single-exponential kinetics in protein folding

    Full text link
    The folding of naturally occurring, single domain proteins is usually well-described as a simple, single exponential process lacking significant trapped states. Here we further explore the hypothesis that the smooth energy landscape this implies, and the rapid kinetics it engenders, arises due to the extraordinary thermodynamic cooperativity of protein folding. Studying Miyazawa-Jernigan lattice polymers we find that, even under conditions where the folding energy landscape is relatively optimized (designed sequences folding at their temperature of maximum folding rate), the folding of protein-like heteropolymers is accelerated when their thermodynamic cooperativity enhanced by enhancing the non-additivity of their energy potentials. At lower temperatures, where kinetic traps presumably play a more significant role in defining folding rates, we observe still greater cooperativity-induced acceleration. Consistent with these observations, we find that the folding kinetics of our computational models more closely approximate single-exponential behavior as their cooperativity approaches optimal levels. These observations suggest that the rapid folding of naturally occurring proteins is, at least in part, consequences of their remarkably cooperative folding
    corecore