16 research outputs found

    Renewable energy integration into the Australian National Electricity Market: Characterising the energy value of wind and solar generation

    Get PDF
    This paper examines how key characteristics of the underlying wind and solar resources may impact on their energy value within the Australian National Electricity Market(NEM). Analysis has been performed for wind generation using half hour NEM data for South Australia over the 2008-9 financial year. The potential integration of large scale solar generation has been modelled using direct normal solar radiant energy measurements from the Bureau of Meteorology for six sites across the NEM. For wind energy, the level and variability of actual wind farm outputs in South Australia is analysed. High levels of wind generation in that State have been found to have a strong secondary effect on spot prices. Wind generation's low operating costs will see it displacing higher operating cost fossil-fuel plant at times of high wind. At the same time, the increased variability of wind may impose additional challenges and costs on conventional plant which will also be reflected in wholesale spot market prices. It is shown that this is proving particularly important during high wind penetration periods, which are contributing to an increased frequency of low or even negative prices. The solar resource in South Australia is shown to be highly variable; however, as seen with wind power, geographical dispersion of generators can significantly reduce power variability, even with as few as six sites. The correlation of the solar resource with spot prices also appears to be superior to wind generation. Modelling using the Adelaide solar resource showed that, for electricity sold into the spot market, two-axis tracking solar generators would achieve an average price that is over twice that received by wind generators over the year 2008-9 analysed. Of course, significant solar generation deployment might drive similar price impacts as seen with wind generation, thereby reducing this advantage. Considering the potential implications of both major wind and solar generation within South Australia, the solar and wind resources within the State appear, on average, to be non-correlated for the magnitude, and the change in magnitude, across half an hour. The analysis shows that solar and wind resources within the NEM have key characteristics that can markedly impact on their energy value within the wholesale electricity market. High levels of renewable electricity are already affecting spot prices, highlighting the need for low bidding renewable generators to attain power purchase contracts and for developers to consider this effect when choosing a site location for renewable generators. Other generators within the NEM may also be significantly impacted by major renewable energy deployment. The long-term success of renewable generation will likely depend on maximising the energy value that it contributes to the electricity industry.Energy value, Integration, NEM, Solar, Variability, Wind, Environmental Economics and Policy, Resource /Energy Economics and Policy,

    The Application of TAPM for Site Specific Wind Energy Forecasting

    No full text
    The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM), and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP) model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained

    The Application of TAPM for Site Specific Wind Energy Forecasting

    No full text
    The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM), and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP) model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained

    Renewable energy integration into the Australian National Electricity Market: Characterising the energy value of wind and solar generation

    No full text
    This paper examines how key characteristics of the underlying wind and solar resources may impact on their energy value within the Australian National Electricity Market (NEM). Analysis has been performed for wind generation using half hour NEM data for South Australia over the 2008-9 financial year. The potential integration of large scale solar generation has been modelled using direct normal solar radiant energy measurements from the Bureau of Meteorology for six sites across the NEM. For wind energy, the level and variability of actual wind farm outputs in South Australia is analysed. High levels of wind generation in that State have been found to have a strong secondary effect on spot prices. Wind generation‟s low operating costs will see it displacing higher operating cost fossil-fuel plant at times of high wind. At the same time, the increased variability of wind may impose additional challenges and costs on conventional plant which will also be reflected in wholesale spot market prices. It is shown that this is proving particularly important during high wind penetration periods,which are contributing to an increased frequency of low or even negative prices.The solar resource in South Australia is shown to be highly variable; however, as seen with wind power, geographical dispersion of generators can significantly reduce power variability, even with as few as six sites. The correlation of the solar resource with spot prices also appears to be superior to wind generation. Modelling using the Adelaide solar resource showed that, for electricity sold into the spot market, two-axis tracking solar generators would achieve an average price that is over twice that received by wind generators over the year 2008-9 analysed. Of course, significant solar generation deployment might drive similar price impacts as seen with wind generation, thereby reducing this advantage. Considering the potential implications of both major wind and solar generation within South Australia, the solar and wind resources within the State appear, on average, to be non-correlated for the magnitude, and the change in magnitude, across half an hour. The analysis shows that solar and wind resources within the NEM have key characteristics that can markedly impact on their energy value within the wholesale electricity market. High levels of renewable electricity are already affecting spot prices, highlighting the need for low bidding renewable generators to attain power purchase contracts and for developers to consider this effect when choosing a site location for renewable generators. Other generators within the NEM may also be significantly impacted by major renewable energy deployment. The long-term success of renewable generation will likely depend on maximising the energy value that it contributes to theelectricity industry.

    Renewable energy integration into the Australian National Electricity Market: Characterising the energy value of wind and solar generation

    No full text
    This paper examines how key characteristics of the underlying wind and solar resources may impact on their energy value within the Australian National Electricity Market(NEM). Analysis has been performed for wind generation using half hour NEM data for South Australia over the 2008-9 financial year. The potential integration of large scale solar generation has been modelled using direct normal solar radiant energy measurements from the Bureau of Meteorology for six sites across the NEM. For wind energy, the level and variability of actual wind farm outputs in South Australia is analysed. High levels of wind generation in that State have been found to have a strong secondary effect on spot prices. Wind generation's low operating costs will see it displacing higher operating cost fossil-fuel plant at times of high wind. At the same time, the increased variability of wind may impose additional challenges and costs on conventional plant which will also be reflected in wholesale spot market prices. It is shown that this is proving particularly important during high wind penetration periods, which are contributing to an increased frequency of low or even negative prices. The solar resource in South Australia is shown to be highly variable; however, as seen with wind power, geographical dispersion of generators can significantly reduce power variability, even with as few as six sites. The correlation of the solar resource with spot prices also appears to be superior to wind generation. Modelling using the Adelaide solar resource showed that, for electricity sold into the spot market, two-axis tracking solar generators would achieve an average price that is over twice that received by wind generators over the year 2008-9 analysed. Of course, significant solar generation deployment might drive similar price impacts as seen with wind generation, thereby reducing this advantage. Considering the potential implications of both major wind and solar generation within South Australia, the solar and wind resources within the State appear, on average, to be non-correlated for the magnitude, and the change in magnitude, across half an hour. The analysis shows that solar and wind resources within the NEM have key characteristics that can markedly impact on their energy value within the wholesale electricity market. High levels of renewable electricity are already affecting spot prices, highlighting the need for low bidding renewable generators to attain power purchase contracts and for developers to consider this effect when choosing a site location for renewable generators. Other generators within the NEM may also be significantly impacted by major renewable energy deployment. The long-term success of renewable generation will likely depend on maximising the energy value that it contributes to the electricity industry

    Radiative transfer in realistic model atmospheres

    Full text link

    The resilience of Australian wind energy to climate change

    No full text
    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future
    corecore