12 research outputs found
Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion
Zinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site. The generation of obligate heterodimeric ZFNs was shown to significantly reduce ZFN-associated cytotoxicity in single-site genome editing strategies. To further expand the application range of ZFNs, we employed a combination of in silico protein modeling, in vitro cleavage assays, and in vivo recombination assays to identify autonomous ZFN pairs that lack cross-reactivity between each other. In the context of ZFNs designed to recognize two adjacent sites in the human HOXB13 locus, we demonstrate that two autonomous ZFN pairs can be directed simultaneously to two different sites to induce a chromosomal deletion in ā¼10% of alleles. Notably, the autonomous ZFN pair induced a targeted chromosomal deletion with the same efficacy as previously published obligate heterodimeric ZFNs but with significantly less toxicity. These results demonstrate that autonomous ZFNs will prove useful in targeted genome engineering approaches wherever an application requires the expression of two distinct ZFN pairs
Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated
Fumaric Acids Directly Influence Gene Expression of Neuroprotective Factors in Rodent Microglia
Dimethylfumarate (DMF) has been approved the for treatment of relapsing-remitting multiple sclerosis. The mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood, notably for brain resident cells. Therefore we investigated potential direct effects of DMF and MMF on microglia and indirect effects on oligodendrocytes. Primary rat microglia were differentiated into M1-like, M2-like and M0 phenotypes and treated in vitro with DMF or MMF. The gene expression of pro-inflammatory and anti-inflammatory factors such as growth factors (IGF-1), interleukins (IL-10, IL-1β), chemokines (CCl3, CXCL-10) as well as cytokines (TGF-1β, TNFα), iNOS, and the mannose receptor (MRC1) was examined by determining their transcription level with qPCR, and on the protein level by ELISA and FACS analysis. Furthermore, microglia function was determined by phagocytosis assays and indirect effects on oligodendroglial proliferation and differentiation. DMF treatment of M0 and M1-like polarized microglia demonstrated an upregulation of gene expression for IGF-1 and MRC1, but not on the protein level. While the phagocytic activity remained unchanged, DMF and MMF treated microglia supernatants led to an enhanced proliferation of oligodendrocyte precursor cells (OPC). These results suggest that DMF has anti-inflammatory effects on microglia which may result in enhanced proliferation of OPC
Fingolimod Associated Bilateral Cystoid Macular EdemaāWait and See?
Fingolimod 0.5-mg once-daily is an approved therapy for patients with relapsingāremitting multiple sclerosis (MS). Several pivotal and real-world studies have demonstrated that fingolimod is associated with the development of macular edema (ME). Herein, we present a case of a diabetic MS patient who developed severe bilateral ME during fingolimod treatment. By means of this case study we provide a detailed review about fingolimod associated macular edema (FAME), its current incidence with or without diabetes mellitus, and previous therapy attempts and outcomes in MS patients. Intravitreal administration of antibodies raised against vascular endothelial growth factor A (VEGF-A) has not yet been used in the management of FAME, however, the excellent therapeutic response in our patient may justify the use of anti-VEGF-A agents in combination with cessation of fingolimod to achieve fast resolution of FAME and to prevent visual deficits, particularly in bilateral FAME
Importance of Follow-Up Cerebrospinal Fluid Analysis in Cryptococcal Meningoencephalitis
Cryptococcal meningoencephalitis represents a serious infection of the central nervous system, where reliable prognostic factors during the disease course are needed.
Twenty-one patients diagnosed with cryptococcal meningoencephalitis in a German university hospital from 1999 to 2013 were analysed retrospectively. CSF parameters were analysed prior to therapy and during antifungal treatment and were compared between patients who survived or deceased. Fifteen patients clinically improved after antifungal therapy, while six patients died. No differences were observed between the outcome groups for the CSF parameters cell count, lactate, total protein, and CSF-serum albumin quotients (QAlb). Follow-up examinations of serum cryptococcal antigen titer and CSF cell count have shown that these parameters cannot be used to monitor the efficacy of antifungal therapy as well. In contrast, the course of QAlb during therapy was indicative for the outcome as a possible prognostic marker. In patients with clinical improvement QAlb values were falling under therapy, while rising QAlb values were found in patients with fatal outcome indicating a continuing dysfunction of the blood-CSF barrier. In conclusion, our results indicate that, among the various CSF parameters, the course of QAlb presents a promising marker that might be used to monitor the efficacy of antifungal therapy
Varicella zoster virus infections in neurological patients: a clinical study
Abstract Background Varicella zoster virus (VZV) reactivation is a common infectious disease in neurology and VZV the second most frequent virus detected in encephalitis. This study investigated characteristics of clinical and laboratory features in patients with VZV infection. Methods Two hundred eighty two patients with VZV reactivation that were hospitalized in the department of neurology in the time from 2005 to 2013 were retrospectively evaluated. Results from cerebrospinal fluid (CSF) analysis were available from 85 patients. Results Trigeminal rash was the most common clinical manifestation, followed by segmental rash, CNS infection, facial nerve palsy, postherpetic neuralgia, and radiculitis. MRI of the brain performed in 25/33 patients with encephalitis/meningitis did not show any signs of infection in the brain parenchyma. Only one patient showed contrast enhancement in the hypoglossal nerve. General signs of infection such as fever or elevated CRP values were found in only half of the patients. Furthermore, rash was absent in a quarter of patients with CNS infection and facial nerve palsy, and thus, infection could only be proven by CSF analysis. Although slight inflammatory CSF changes occurred in few patients with isolated rash, the frequency was clearly higher in patients with CNS infection and facial nerve palsy. Conclusion Monosegmental herpes zoster is often uncomplicated and a diagnostic lumbar puncture is not essential. In contrast, CSF analysis is an essential diagnostic tool in patients with skin lesions and cranial nerve or CNS affection. In patients with neuro-psychiatric symptoms and inflammatory CSF changes analysis for VZV should be performed even in the absence of skin lesions
PD-1-inhibitor pembrolizumab for treatment of progressive multifocal leukoencephalopathy
The reactivation of human JC polyoma virus (JCPyV) results in lytic infection of oligodendrocytes and neuronal cells. The corresponding clinical picture is called progressive multifocal leukoencephalopathy (PML) and results mostly from a disease-related or drug-induced immunosuppression. The opportunistic brain infection leads to a progressive demyelination of multiple areas of the central nervous system. Patients can present with various neurological deficits ranging from slight motoric symptoms to marked aphasia or reduced vigilance. Currently, there is no effective causal therapy for PML. Survival depends on the ability to achieve timely immune reconstitution. If the immune system cannot be restored, PML progresses rapidly and often ends fatally within months. Recently, some evidence for positive response has been reported in patients treated with immune checkpoint inhibitor therapy. Here, we provide a case series of three PML patients with underlying hematological malignancies who were treated with anti-PD-1-antibody pembrolizumab at Hannover Medical School. All patients received an extensive diagnostic follow-up including cerebrospinal fluid analysis, brain imaging, and lymphocyte-phenotyping via flow cytometry. Our patients had very different outcomes, with the only patient showing a specific anti-JCPyV immune response in the sense of an increased JCPyV antibody index clearly benefiting most from the treatment. Our results partly support the hypothesis that anti-PD-1 therapy may represent a promising treatment option for patients with PML. However, there is a current lack of pre-therapeutic stratification regarding the therapeutic response rates. Before larger studies can be initiated to further evaluate the efficacy of anti-PD-1 antibodies in PML, it is imperative to develop a reliable strategy for selecting suitable patients