53 research outputs found

    KIR3DL1 Allotype-Dependent Modulation of NK Cell Immunity against Chronic Myeloid Leukemia

    Get PDF
    Tyrosine kinase inhibitor (TKI)–treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of KIR3DL1 and HLAs were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance–conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of KIR3DL1*01502 into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient–derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner

    Switching and Emergence of CTL Epitopes in HIV-1 Infection

    Get PDF
    Background Human Leukocyte Antigen (HLA) class I restricted Cytotoxic T Lymphocytes (CTLs) exert substantial evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1 nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class I allele expressed in ~70% of Japanese persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes, however, the extent to which such dynamic “CTL epitope switching” occurs in HIV-1 remains incompletely known. Results Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses to Nef126-10, none harboring the “wild-type” (global HIV-1 subtype B consensus) Y135 did so, suggesting that Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former. Conclusions Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following transmission (or in vivo selection) of HIV-1 containing Y135F may explain in part the previously reported stable plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and Nef-Y135F in circulating HIV-1 sequences

    A safeguard system for induced pluripotent stem cell-derived rejuvenated T cell therapy

    Get PDF
    The discovery of induced pluripotent stem cells (iPSCs) has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9) into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID) initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL) therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy

    Effect of Maraviroc intensification on HIV-1-specific T cell immunity in recently HIV-1-infected individuals

    Get PDF
    BACKGROUND: The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown. METHODS: Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation). RESULTS: Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8⁺ T cells were indistinguishable between the two arms and did not change over time between the groups. CONCLUSIONS: Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies

    Sirtuin-2, NAD-Dependent Deacetylase, is a new potential therapeutic target for HIV-1 infection and HIV-related neurological dysfunction

    Get PDF
    The implementation and access to combined antiretroviral treatment (cART) have dramatically improved the quality of life of people living with HIV (PLWH). However, some comorbidities, such as neurological disorders associated with HIV infection still represent a serious clinical challenge. Soluble factors in plasma that are associated with control of HIV replication and neurological dysfunction could serve as early biomarkers and as new therapeutic targets for this comorbidity. We used a customized antibody array for determination of blood plasma factors in 40 untreated PLWH with different levels of viremia and found sirtuin-2 (SIRT2), an NAD-dependent deacetylase, to be strongly associated with elevated viral loads and HIV provirus levels, as well as with markers of neurological damage (a-synuclein [SNCA], brain-derived neurotrophic factor [BDNF], microtubule-associated protein tau [MAPT], and neurofilament light protein [NFL]). Also, longitudinal analysis in HIV-infected individuals with immediate (n = 9) or delayed initiation (n = 10) of cART revealed that after 1 year on cART, SIRT2 plasma levels differed between both groups and correlated inversely with brain orbitofrontal cortex involution. Furthermore, targeting SIRT2 with specific small-molecule inhibitors in in vitro systems using J-LAT A2 and primary glial cells led to diminished HIV replication and virus reactivation from latency. Our data thus identify SIRT2 as a novel biomarker of uncontrolled HIV infection, with potential impact on neurological dysfunction and offers a new therapeutic target for HIV treatment and cure. IMPORTANCE Neurocognitive disorders are frequently reported in people living with HIV (PLWH) even with the introduction of combined antiretroviral treatment (cART). To identify biomarkers and potential therapeutic tools to target HIV infection in peripheral blood and in the central nervous system (CNS), plasma proteomics were applied in untreated chronic HIV-infected individuals with different levels of virus control. High plasma levels of sirtuin-2 (SIRT2), an NAD+ deacetylase, were detected in uncontrolled HIV infection and were strongly associated with plasma viral load and proviral levels. In parallel, SIRT2 levels in the peripheral blood and CNS were associated with markers of neurological damage and brain involution and were more pronounced in individuals who initiated cART later in infection. In vitro infection experiments using specific SIRT2 inhibitors suggest that specific targeting of SIRT2 could offer new therapeutic treatment options for HIV infections and their associated neurological dysfunction

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Establishment of qualitative human immunodeficiency virus type 1 nucleic acid amplification test as an adjunct confirmatory test in low-prevalence areas and small- and medium-sized diagnostic laboratories

    No full text
    Two simple and inexpensive in-house qualitative human immunodeficiency virus type 1 nucleotide amplification tests (HIV-1 NATs) were established as adjunct confirmatory HIV test for HIV antigen (Ag)-positive specimens identified from HIV screening test and for patients with indeterminate or negative HIV antibody (Ab) confirmatory test results. The limit of detection was <1000 copies/mL, which is lower than that of the HIV Ag/Ab combination assay. One test using QL1 detected all 11 HIV-1 subtypes/circulating recombinant forms/group samples with almost equal analytical sensitivity, and the other test, using QL2, also detected all, except for two group O samples. In the examination of 28 HIV-1 Ag-positive samples using Determine HIV Early Detect, 27 samples were reactive and one HIV-1 Ag-pseudo-positive sample was non-reactive using both methods. These in-house qualitative HIV-1 NATs are useful for confirming HIV-1 Ag-positive cases and excluding HIV-1 Ag false-positive cases in areas with low HIV prevalence and small- and medium-sized diagnostic laboratories

    Evaluation of Geenius HIV-1/2 Confirmatory Assay for the confirmatory and differential diagnosis of HIV-1/HIV-2 in Japan and reliability of the Geenius Reader in the diagnosis of HIV-2

    No full text
    Abstract Background NEW LAV BLOT I and II (LAV I and LAV II), they were only option for human immunodeficiency virus (HIV) confirmatory test, following HIV screening test using HIV Ag/Ab combination test in Japan. We evaluated the performance of Geenius HIV-1/2 Confirmatory Assay (Geenius), both as a confirmatory test and for differentiation between HIV-1 and HIV-2, in comparison with LAV I and LAV II. Methods Eighty-nine HIV-1-positive plasma specimens, one anti-HIV-1 low-titer performance panel, 10 seroconversion panels, and two anti-HIV-1/2 combo performance panels were tested. The results were read with the Geenius Reader and by visual reading. Results All 89 HIV-1-positive plasma specimens were identified as HIV-1-positive using Geenius; this 100% success rate was superior to that with LAV I (95.5% using WHO criteria, 98.9% using CDC criteria). The HIV-1-positive specimens showed low cross-reactivity with HIV-2 lines in Geenius. The sensitivity of Geenius for HIV-1 detection was the same as or greater than that of LAV I, but less than that of Genscreen HIV Ag-Ab ULT, in our analysis of the commercial performance and seroconversion panels. In contrast, five of the 13 HIV-2-positive specimens that had been identified as HIV-positive untypable by visual reading because of their cross-reactivity to HIV-1 lines were successfully identified by the Geenius Reader as HIV-2-positive with cross-reactivity. Conclusions Geenius provides strong performance for HIV confirmatory tests and HIV-1 differentiation tests. However, when visual reading is used, its performance in HIV-2 differentiation is less reliable. Because HIV-2 infection has been sporadically reported in Japan, the use of the Geenius Reader is preferable to ensure more reliable HIV-1/HIV-2 differentiation

    Loss of the Brm-Type SWI/SNF Chromatin Remodeling Complex Is a Strong Barrier to the Tat-Independent Transcriptional Elongation of Human Immunodeficiency Virus Type 1 Transcripts▿ †

    No full text
    To elucidate the epigenetic regulation of Tat-independent human immunodeficiency virus (HIV) transcription following proviral integration, we constructed an HIV type 1 (HIV-1)-based replication-defective viral vector that expresses a reporter green fluorescent protein (GFP) product from its intact long terminal repeat (LTR). We transduced this construct into human tumor cell lines that were either deficient in or competent for the Brm-type SWI/SNF complex. One day after transduction, single cells that expressed GFP were sorted, and the GFP expression profiles originating from each of these clones were analyzed. Unlike clones of the SWI/SNF-competent cell line, which exhibited clear unimodal expression patterns in all cases, many clones originating from Brm-deficient cell lines either showed a broad-range distribution of GFP expression or were fully silenced. The resorting of GFP-negative populations of these isolated clones showed that GFP silencing is either reversible or irreversible depending upon the proviral integration sites. We further observed that even in these silenced clones, proviral gene transcription initiates to accumulate short transcripts of around 60 bases in length, but no elongation occurs. We found that this termination is caused by tightly closed nucleosome-1 (nuc-1) at the 5′ LTR. Also, nuc-1 is remodeled by exogenous Brm in some integrants. From these results, we propose that Brm is required for the occasional transcriptional elongation of the HIV-1 provirus in the absence of Tat. Since the Brm-type SWI/SNF complex is expressed at marginal levels in resting CD4+ T cells and is drastically induced upon CD4+ T-cell activation, we speculate that it plays crucial roles in the early Tat-independent phase of HIV transcription in affected patients
    corecore