20 research outputs found

    Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass

    Full text link
    The two dimensional XY spin glass is studied numerically by a finite size scaling method at T=0 in the vortex representation which allows us to compute the exact (in principle) spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase at any finite T. Our results strongly support the conjecture that both spin and chiral order have the same correlation length exponent ν2.70\nu \approx 2.70. We obtain preliminary results in 3d.Comment: 4 pages, 2 figures, revte

    Domain Wall Renormalization Group Study of XY Model with Quenched Random Phase Shifts

    Full text link
    The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents θs0.36\theta_{s} \approx -0.36 in 2D and θs+0.31\theta_{s} \approx +0.31 in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the ±J\pm J XY spin glass in 3D, we obtain a spin stiffness exponent θs+0.10\theta_{s} \approx +0.10 which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain θs<0\theta_{s}< 0. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale LL. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.Comment: 14 pages, 9 figures, revtex

    Nine things to know about elicitins

    Get PDF
    Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology

    CO OBSERVATIONS OF CMa OB1/RA REGION

    No full text
    A large scale 13 CO(J=1-0) survey was made for CMa OB1/R1 region in 220 ffi l 230 ffi and \Gamma10 ffi b 10 ffi with a 8 0 spacing by using the 4 m radio telescope of Nagoya University. 34 isolated clouds were identified in this survey. Among them, two clouds were firstly identified by us. The observed LSR velocity indicate that almost of the all clouds are located in the Local arm, except two extreme velocity. The mass spectrum of the clouds in the Local arm is best fitted by a power-law index of 1.6. Key Words : catalog --- ISM: clouds --- ISM: molecules I. INTRODUCTION The massive cloud complex CMa OB1 is comparable in size to Orion molecular complex. The distance is estimated as 1150 pc(Claria 1974). At 4 arc-degree west from the complex, another cloud complex is located and a massive filament structure, called &apos;Southern Filament of Orion&apos;, extends from the complex to the southeast edge of Mon R2. A OB association, several reflection nebulae, H II regions, T Taur..

    Complex formation of immunoglobulin superfamily molecules Side-IV and Beat-IIb regulates synaptic specificity

    No full text
    Summary: Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV’s co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo
    corecore