85 research outputs found

    Effects of forced swimming stress on rat brain function

    Get PDF
    Chronic stress has been reported to be an essential factor for depression. In this study, the effect of forced swimming stress on neurotransmitters and cellular signaling pathway contributing to brain functions was investigated using the forced swimming test (FST) in order to understanding of mechanisms to regulate stress signals in brain. Antidepressant drug, imipramine, significantly reduced the immobility time of male rats in the FST by 85% at a dose of 15mg/kg for 2 weeks. This result indicated that the swimming stress caused a depressed state in the rats without administration of imipramine. Swimming stress significantly lowered the serotonergic ratio and also markedly enhanced the phosphorylation of ERK1/2 in the hypothalamus region compared to the rats without FST. These phenomena maybe included in key mechanisms of the development of depression

    Plasma Cytokine Profiles in Subjects with High-Functioning Autism Spectrum Disorders

    Get PDF
    Accumulating evidence suggests that dysregulation of the immune system is involved in the pathophysiology of autism spectrum disorders (ASD). The aim of the study was to explore immunological markers in peripheral plasma samples from non-medicated subjects with high-functioning ASD.A multiplex assay for cytokines and chemokines was applied to plasma samples from male subjects with high-functioning ASD (n = 28) and matched controls (n = 28). Among a total of 48 analytes examined, the plasma concentrations of IL-1β, IL-1RA, IL-5, IL-8, IL-12(p70), IL-13, IL-17 and GRO-α were significantly higher in subjects with ASD compared with the corresponding values of matched controls after correction for multiple comparisons.The results suggest that abnormal immune responses as assessed by multiplex analysis of cytokines may serve as one of the biological trait markers for ASD

    Mutation Analysis of 2009 Pandemic Influenza A(H1N1) Viruses Collected in Japan during the Peak Phase of the Pandemic

    Get PDF
    BACKGROUND: Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country. It is of great importance to profile and understand the situation regarding viral mutations and their circulation in Japan to accumulate a knowledge base and to prepare clinical response platforms before a second pandemic (pdm) wave emerges. METHODOLOGY: A total of 253 swab samples were collected from patients with influenza-like illness in the Osaka, Tokyo, and Chiba areas both in May 2009 and between October 2009 and January 2010. We analyzed partial sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of the 2009 pdm influenza virus in the collected clinical samples. By phylogenetic analysis, we identified major variants of the 2009 pdm influenza virus and critical mutations associated with severe cases, including drug-resistance mutations. RESULTS AND CONCLUSIONS: Our sequence analysis has revealed that both HA-S220T and NA-N248D are major non-synonymous mutations that clearly discriminate the 2009 pdm influenza viruses identified in the very early phase (May 2009) from those found in the peak phase (October 2009 to January 2010) in Japan. By phylogenetic analysis, we found 14 micro-clades within the viruses collected during the peak phase. Among them, 12 were new micro-clades, while two were previously reported. Oseltamivir resistance-related mutations, i.e., NA-H275Y and NA-N295S, were also detected in sporadic cases in Osaka and Tokyo

    One-Step Detection of the 2009 Pandemic Influenza A(H1N1) Virus by the RT-SmartAmp Assay and Its Clinical Validation

    Get PDF
    <div><h3>Background</h3><p>In 2009, a pandemic (pdm) influenza A(H1N1) virus infection quickly circulated globally resulting in about 18,000 deaths around the world. In Japan, infected patients accounted for 16% of the total population. The possibility of human-to-human transmission of highly pathogenic novel influenza viruses is becoming a fear for human health and society.</p> <h3>Methodology</h3><p>To address the clinical need for rapid diagnosis, we have developed a new method, the “RT-SmartAmp assay”, to rapidly detect the 2009 pandemic influenza A(H1N1) virus from patient swab samples. The RT-SmartAmp assay comprises both reverse transcriptase (RT) and isothermal DNA amplification reactions in one step, where RNA extraction and PCR reaction are not required. We used an exciton-controlled hybridization-sensitive fluorescent primer to specifically detect the HA segment of the 2009 pdm influenza A(H1N1) virus within 40 minutes without cross-reacting with the seasonal A(H1N1), A(H3N2), or B-type (Victoria) viruses.</p> <h3>Results and Conclusions</h3><p>We evaluated the RT-SmartAmp method in clinical research carried out in Japan during a pandemic period of October 2009 to January 2010. A total of 255 swab samples were collected from outpatients with influenza-like illness at three hospitals and eleven clinics located in the Tokyo and Chiba areas in Japan. The 2009 pdm influenza A(H1N1) virus was detected by the RT-SmartAmp assay, and the detection results were subsequently compared with data of current influenza diagnostic tests (lateral flow immuno-chromatographic tests) and viral genome sequence analysis. In conclusion, by the RT-SmartAmp assay we could detect the 2009 pdm influenza A(H1N1) virus in patients' swab samples even in early stages after the initial onset of influenza symptoms. Thus, the RT-SmartAmp assay is considered to provide a simple and practical tool to rapidly detect the 2009 pdm influenza A(H1N1) virus.</p> </div

    Sensitivity of turtles to anticoagulant rodenticides: Risk assessment for green sea turtles (Chelonia mydas) in the Ogasawara Islands and comparison of warfarin sensitivity among turtle species

    Get PDF
    Although anticoagulant rodenticides (ARs) are effectively used for the control of invasive rodents, nontarget species are also frequently exposed to ARs and secondary poisonings occur widely. However, little data is available on the effects of ARs, especially on marine organisms. To evaluate the effects of ARs on marine wildlife, we chose green sea turtles (Chelonia mydas), which are one of the most common marine organisms around the Ogasawara islands, as our primary study species. The sensitivity of these turtles to ARs was assessed using both in vivo and in vitro approaches. We administered 4 mg/kg of warfarin sodium either orally or intravenously to juvenile green sea turtles. The turtles exhibited slow pharmacokinetics, and prolongation of prothrombin time (PT) was observed only with intravenous warfarin administration. We also conducted an in vitro investigation using liver microsomes from green sea turtles, and two other turtle species (softshell turtle and red-eared slider) and rats. The cytochrome P450 metabolic activity in the liver of green sea turtles was lower than in rats. Additionally, vitamin K epoxide reductase (VKOR), which is the target enzyme of ARs, was inhibited by warfarin in the turtles at lower concentration levels than in rats. These data indicate that turtles may be more sensitive to ARs than rats. We expect that these findings will be helpful for sea turtle conservation following accidental AR-broadcast incidents
    corecore