102 research outputs found

    Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue

    Full text link
    The present study focused on the effects of trunk extensor muscles fatigue on postural control during quiet standing under different somatosensory conditions from the foot and the ankle. With this aim, 20 young healthy adults were asked to stand as immobile as possible in two conditions of No fatigue and Fatigue of trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot and the ankle was degraded by standing on a foam surface. In Experiment 2 (n = 10), somatosensation from the foot and ankle was facilitated through the increased cutaneous feedback at the foot and ankle provided by strips of athletic tape applied across both ankle joints. The centre of foot pressure displacements (CoP) were recorded using a force platform. The results showed that (1) trunk extensor muscles fatigue increased CoP displacements under normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this destabilizing effect was exacerbated when somatosensation from the foot and the ankle was degraded (Experiment 1), and (3) this destabilizing effect was mitigated when somatosensation from the foot and the ankle was facilitated (Experiment 2). Altogether, the present findings evidenced re-weighting of sensory cues for controlling posture during quiet standing following trunk extensor muscles fatigue by increasing the reliance on the somatosensory inputs from the foot and the ankle. This could have implications in clinical and rehabilitative areas

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Sensori-motor adaptation to knee osteoarthritis during stepping-down before and after total knee replacement

    Get PDF
    BACKGROUND: Stepping-down is preceded by a shift of the center of mass towards the supporting side and forward. The ability to control both balance and lower limb movement was investigated in knee osteoarthritis patients before and after surgery. It was hypothesized that pain rather than knee joint mobility affects the coordination between balance and movement control. METHODS: The experiment was performed with 25 adult individuals. Eleven were osteoarthritic patients with damage restricted to one lower limb (8 right leg and 3 left leg). Subjects were recruited within two weeks before total knee replacement by the same orthopedic surgeon using the same prosthesis and technics of surgery. Osteoarthritic patients were tested before total knee replacement (pre-surgery session) and then, 9 of the 11 patients were tested one year after the surgery when re-educative training was completed (post-surgery session). 14 adult individuals (men: n = 7 and women: n = 7) were tested as the control group. RESULTS: The way in which the center of mass shift forward and toward the supporting side is initiated (timing and amplitude) did not vary within patients before and after surgery. In addition knee joint range of motion of the leading leg remained close to normal before and after surgery. However, the relative timing between both postural and movement phases was modified for the osteoarthritis supporting leg (unusual strategy for stepping-down) before surgery. The "coordinated" control of balance and movement turned to be a "sequential" mode of control; once the body weight transfer has been completed, the movement onset is triggered. This strategy could be aimed at shortening the duration-time supporting on the painful limb. However no such compensatory response was observed. CONCLUSION: The change in the strategy used when supporting on the arthritis and painful limb could result from the action of nociceptors that lead to increased proprioceptor thresholds, thus gating the proprioceptive inputs that may be the critical afferents in controlling the timing of the coordination between balance and movement initiation control

    Can a Plantar Pressure-Based Tongue-Placed Electrotactile Biofeedback Improve Postural Control Under Altered Vestibular and Neck Proprioceptive Conditions?

    Full text link
    We investigated the effects of a plantar pressure-based tongue-placed electrotactile biofeedback on postural control during quiet standing under normal and altered vestibular and neck proprioceptive conditions. To achieve this goal, fourteen young healthy adults were asked to stand upright as immobile as possible with their eyes closed in two Neutral and Extended head postures and two conditions of No-biofeedback and Biofeedback. The underlying principle of the biofeedback consisted of providing supplementary information related to foot sole pressure distribution through a wireless embedded tongue-placed tactile output device. Centre of foot pressure (CoP) displacements were recorded using a plantar pressure data acquisition system. Results showed that (1) the Extended head posture yielded increased CoP displacements relative to the Neutral head posture in the No-biofeedback condition, with a greater effect along the anteroposterior than mediolateral axis, whereas (2) no significant difference between the two Neutral and Extended head postures was observed in the Biofeedback condition. The present findings suggested that the availability of the plantar pressure-based tongue-placed electrotactile biofeedback allowed the subjects to suppress the destabilizing effect induced by the disruption of vestibular and neck proprioceptive inputs associated with the head extended posture. These results are discussed according to the sensory re-weighting hypothesis, whereby the central nervous system would dynamically and selectively adjust the relative contributions of sensory inputs (i.e., the sensory weights) to maintain upright stance depending on the sensory contexts and the neuromuscular constraints acting on the subject

    Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amputation impairs the ability to balance. We examined adaptation strategies in balance following dysvascularity-induced unilateral tibial amputation in skilled prosthetic users (SPU) and first fitted amputees (FFA) (N = 28).</p> <p>Methods</p> <p>Excursions of center of pressure (COP) were determined during 20 s quiet standing using a stabilometry system with eyes-open on both legs or on the non-affected leg(s). Main measures: COP trajectories and time functions; distribution of reaction forces between the two legs; inclination angles obtained through second order regression analysis using stabilogram data.</p> <p>Results</p> <p>FFA vs SPU demonstrated 27.8% greater postural sway in bilateral stance (p = 0.0004). Postural sway area was smaller in FFA standing on the non-affected leg compared with SPU (p = 0.028). The slope of the regression line indicating postural stability was nearly identical in FFA and SPU and the direction of regression line was opposite for the left and right leg amputees.</p> <p>Conclusion</p> <p>Of the two adaptation strategies in balance, the first appears before amputation due to pain and fatigue in the affected leg. This strategy appears in the form of reduced postural sway while standing on the non-affected leg. The second adaptation occurs during rehabilitation and regular use of the prosthesis resulting in normal weightbearing associated with reduced postural sway on two legs and return to the normal postural stability on one leg.</p

    Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis

    Get PDF
    BACKGROUND: Scoliosis is the most common type of spinal deformity. In North American children, adolescent idiopathic scoliosis (AIS) makes up about 90% of all cases of scoliosis. While its prevalence is about 2% to 3% in children aged between 10 to 16 years, girls are more at risk than boys for severe progression with a ratio of 3.6 to 1. The aim of the present study was to test the hypothesis that idiopathic scoliosis interferes with the mechanisms responsible for sensory-reweighting during balance control. METHODS: Eight scoliosis patients (seven female and one male; mean age: 16.4 years) and nine healthy adolescents (average age 16.5 years) participated in the experiment. Visual and ankle proprioceptive information was perturbed (eyes closed and/or tendon vibration) suddenly and then returned to normal (eyes open and/or no tendon vibration). An AMTI force platform was used to compute centre of pressure root mean squared velocity and sway density curve. RESULTS: For the control condition (eyes open and no tendon vibration), adolescent idiopathic scoliosis patients had a greater centre of pressure root mean squared velocity (variability) than control participants. Reintegration of ankle proprioception, when vision was either available or removed, led to an increased centre of pressure velocity variability for the adolescent idiopathic scoliosis patients whereas the control participants reduced their centre of pressure velocity variability. Moreover, in the absence of vision, adolescent idiopathic scoliosis exhibited an increased centre of pressure velocity variability when ankle proprioception was returned to normal (i.e. tendon vibration stopped). The analysis of the sway density plot suggests that adolescent idiopathic scoliosis patients, during sensory reintegration, do not scale appropriately their balance control commands. CONCLUSION: Altogether, the present results demonstrate that idiopathic scoliosis adolescents have difficulty in reweighting sensory inputs following a brief period of sensory deprivation

    Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    Get PDF
    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation
    corecore