7 research outputs found

    Chemical effects of diceCT staining protocols on fluid-preserved avian specimens

    Get PDF
    Diffusible iodine-based contrast-enhanced computed tomography (diceCT) techniques allow visualization of soft tissues of fluid-preserved specimens in three dimensions without dissection or histology. Two popular diceCT stains, iodine-potassium iodide (I2KI) dissolved in water and elemental iodine (I2) dissolved in 100% ethanol (EtOH), yield striking results. Despite the widespread use of these stains in clinical and biological fields, the molecular mechanisms that result in color change and radiopacity attributed to iodine staining are poorly understood. Requests to apply these stains to anatomical specimens preserved in natural history museums are increasing, yet curators have little information about the potential for degradation of treated specimens. To assess the molecular effects of iodine staining on typical museum specimens, we compared the two popular stains and two relatively unexplored stains (I2KI in 70% EtOH, I2 in 70% EtOH). House sparrows (Passer domesticus) were collected and preserved under uniform conditions following standard museum protocols, and each was then subjected to one of the stains. Results show that the three ethanol-based stains worked equally well (producing fully stained, life-like, publication quality scans) but in different timeframes (five, six, or eight weeks). The specimen in I2KI in water became degraded in physical condition, including developing flexible, demineralized bones. The ethanol-based methods also resulted in some demineralization but less than the water-based stain. The pH of the water-based stain was notably acidic compared to the water used as solvent in the stain. Our molecular analyses indicate that whereas none of the stains resulted in unacceptable levels of protein degradation, the bones of a specimen stained with I2KI in water demineralized throughout the staining process. We conclude that staining with I2KI or elemental I2 in 70% EtOH can yield high-quality soft-tissue visualization in a timeframe that is similar to that of better-known iodine-based stains, with lower risk of negative impacts on specimen condition

    The History of Coast Salish ‘Woolly Dogs’ Revealed by Ancient Genomics and Indigenous Knowledge

    Get PDF
    Ancestral Coast Salish societies in the Pacific Northwest kept long-haired “woolly” dogs that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. Here, we analyze genomic and isotopic data from a preserved woolly dog pelt, “Mutton”, collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant pre-colonial ancestry postdating the onset of settler colonialism. We identify candidate genetic variants potentially linked with their unique woolly phenotype. We integrate these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance

    The history of Coast Salish “woolly dogs” revealed by ancient genomics and Indigenous Knowledge

    Get PDF
    Ancestral Coast Salish societies in the Pacific Northwest kept long-haired “woolly dogs” that were bred and cared for over millennia. However, the dog wool–weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from “Mutton,” collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance

    Materials characterization of the Ruby Slippers from the 1939 classic film, The Wizard of Oz

    No full text
    Abstract This article presents a comprehensive materials characterization of a pair of Ruby Slippers used in the 1939 classic film The Wizard of Oz, which has been one of the most popular objects on exhibition at Smithsonian’s National Museum of American History (NMAH) since it entered the collection in 1979. The shoes have been on almost constant display with few instances for study during its time at NMAH, and they remain one of the most visited objects within the museum. Plans for an upcoming permanent exhibit, and visible deterioration of the decades-old shoes, led to the present study, which was the first phase of a major effort to preserve this iconic item of cultural heritage for future generations to enjoy. Materials characterization was used to determine the composition of construction materials and condition of the Ruby Slippers to help plan for the optimal environmental conditions for continued display. The current study is also viewed as a valuable opportunity to learn about the original construction and subsequent history of the Ruby Slippers to inform and enrich NMAH’s curatorial research, public programs, and media initiatives. Analytical methods used to characterize the shoes’ components include micro-X-ray fluorescence spectroscopy (µ-XRF), micro-Fourier transform infrared spectroscopy (µ-FTIR), polarized light microscopy (PLM), and high-performance liquid chromatography–diode array detector–mass spectrometry (HPLC–DAD–MS)
    corecore