10 research outputs found

    Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value

    Get PDF
    Somatic mutations in the additional sex comb-like 1 (ASXL1) gene have been described in various types of myeloid malignancies, including acute myeloid leukemia. Analysis of novel markers, such as ASXL1 mutations, in independent clinical trials is indispensable before considering them for clinical decision-making. We analyzed 882 well-characterized acute myeloid leukemia cases to determine the prevalence and prognostic impact of ASXL1 exon12 mutations. Truncating ASXL1 mutations were present in 46 cases (5.3%). ASXL1 mutations were inversely associated with FLT3 internal tandem duplications and mutually exclusive with NPM1 mutations. ASXL1 mutations were an unfavorable prognostic factor as regards survival (median overall survival 15.9 months vs. 22.3 months; P=0.019), with a significantly lower complete response rate (61% vs. 79.6%; P=0.004). In multivariate analyses, ASXL1 mutations were independently associated with inferior poor overall survival (HR 1.52, P=0.032). In conclusion, ASXL1 mutations are common mutations in acute myeloid leukemia and indicate a poor therapy outcome

    data_sheet_1.PDF

    No full text
    <p>Immunological aging remodels the immune system at several levels. This has been documented in particular for the T-cell receptor (TCR)αβ+ T-cell compartment, showing reduced naive T-cell outputs and an accumulation of terminally differentiated clonally expanding effector T-cells, leading to increased proneness to autoimmunity and cancer development at older age. Even though TCRαβ+ and TCRγδ+ T-cells follow similar paths of development involving V(D)J-recombination of TCR genes in the thymus, TCRγδ+ T-cells tend to be more subjected to peripheral rather than central selection. However, the impact of aging in shaping of the peripheral TRG/TRD repertoire remains largely elusive. Next-generation sequencing analysis methods were optimized based on a spike-in method using plasmid vector DNA-samples for accurate TRG/TRD receptor diversity quantification, resulting in optimally defined primer concentrations, annealing temperatures and cycle numbers. Next, TRG/TRD repertoire diversity was evaluated during TCRγδ+ T-cell ontogeny, showing a broad, diverse repertoire in thymic and cord blood samples with Gaussian CDR3-length distributions, in contrast to the more skewed repertoire in mature circulating TCRγδ+ T-cells in adult peripheral blood. During aging the naive repertoire maintained its diversity with Gaussian CDR3-length distributions, while in the central and effector memory populations a clear shift from young (Vγ9/Vδ2 dominance) to elderly (Vγ2/Vδ1 dominance) was observed. Together with less clear Gaussian CDR3-length distributions, this would be highly suggestive of differentially heavily selected repertoires. Despite the apparent age-related shift from Vγ9/Vδ2 to Vγ2/Vδ1, no clear aging effect was observed on the Vδ2 invariant T nucleotide and canonical Vγ9–Jγ1.2 selection determinants. A more detailed look into the healthy TRG/TRD repertoire revealed known cytomegalovirus-specific TRG/TRD clonotypes in a few donors, albeit without a significant aging-effect, while Mycobacterium tuberculosis-specific clonotypes were absent. Notably, in effector subsets of elderly individuals, we could identify reported TRG and TRD receptor chains from TCRγδ+ T-cell large granular lymphocyte leukemia proliferations, which typically present in the elderly population. Collectively, our results point to relatively subtle age-related changes in the human TRG/TRD repertoire, with a clear shift in Vγ/Vδ usage in memory cells upon aging.</p

    Detecting measurable residual disease beyond 10−4 by an IGHV leader-based NGS approach improves prognostic stratification in CLL

    No full text
    The sensitivity of conventional techniques for reliable quantification of minimal/measurable residual disease (MRD) in chronic lymphocytic leukemia (CLL) is limited to MRD 10−4. Measuring MRD <10−4 could help to further distinguish between patients with CLL with durable remission and those at risk of early relapse. We herein present an academically developed immunoglobulin heavy-chain variable (IGHV) leader-based next-generation sequencing (NGS) assay for the quantification of MRD in CLL. We demonstrate, based on measurements in contrived MRD samples, that the linear range of detection and quantification of our assay reaches beyond MRD 10−5. If provided with sufficient DNA input, MRD can be detected down to MRD 10−6. There was high interassay concordance between measurements of the IGHV leader-based NGS assay and allele-specific oligonucleotide quantitative polymerase chain reaction (PCR) (r = 0.92 [95% confidence interval {CI}, 0.86-0.96]) and droplet digital PCR (r = 0.93 [95% CI, 0.88-0.96]) on contrived MRD samples. In a cohort of 67 patients from the CLL11 trial, using MRD 10−5 as a cutoff, undetectable MRD was associated with superior progression-free survival (PFS) and time to next treatment. More important, deeper MRD measurement allowed for additional stratification of patients with MRD <10−4 but ≥10−5. PFS of patients in this MRD range was significantly shorter, compared with patients with MRD <10−5 (hazard ratio [HR], 4.0 [95% CI, 1.6-10.3]; P = .004), but significantly longer, compared with patients with MRD ≥10−4 (HR, 0.44 [95% CI, 0.23-0.87]; P = .018). These results support the clinical utility of the IGHV leader-based NGS assay

    Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: Prevalence and prognostic value

    No full text
    Somatic mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) were recently demonstrated in acute myeloid leukemia (AML), but their prevalence and prognostic impact remain to be explored in large extensively characterized AML series, and also in various other hematologic malignancies. Here, we demonstrate in 893 newly diagnosed cases of AML mutations in the IDH1 (6%) and IDH2 (11%) genes. Moreover, we identified IDH mutations in 2 JAK2 V617F myeloproliferative neoplasias (n = 96), a single case of acute lymphoblastic leukemia (n = 96), and none in chronic myeloid leukemias (n = 81). In AML, IDH1 and IDH2 mutations are more common among AM

    Molecular Minimal Residual Disease in Acute Myeloid Leukemia

    Get PDF
    BACKGROUND Patients with acute myeloid leukemia (AML) often reach complete remission, but relapse rates remain high. Next-generation sequencing enables the detection of molecular minimal residual disease in virtually every patient, but its clinical value for the prediction of relapse has yet to be established. METHODS We conducted a study involving patients 18 to 65 years of age who had newly diagnosed AML. Targeted next-generation sequencing was carried out at diagnosis and after induction therapy (during complete remission). End points were 4-year rates of relapse, relapse-free survival, and overall survival. RESULTS At least one mutation was detected in 430 out of 482 patients (89.2%). Mutations persisted in 51.4% of those patients during complete remission and were present at various allele frequencies (range, 0.02 to 47%). The detection of persistent DTA mutations (i.e., mutations in DNMT3A, TET2, and ASXL1), which are often present in persons with age-related clonal hematopoiesis, was not correlated with an increased relapse rate. After the exclusion of persistent DTA mutations, the detection of molecular minimal residual disease was associated with a significantly higher relapse rate than no detection (55.4% vs. 31.9%; hazard ratio, 2.14; P<0.001), as well as with lower rates of relapse-free survival (36.6% vs. 58.1%; hazard ratio for relapse or death, 1.92; P<0.001) and overall survival (41.9% vs. 66.1%; hazard ratio for death, 2.06; P<0.001). Multivariate analysis confirmed that the persistence of non-DTA mutations during complete remission conferred significant independent prognostic value with respect to the rates of relapse (hazard ratio, 1.89; P<0.001), relapse-free survival (hazard ratio for relapse or death, 1.64; P=0.001), and overall survival (hazard ratio for death, 1.64; P=0.003). A comparison of sequencing with flow cytometry for the detection of residual disease showed that sequencing had significant additive prognostic value. CONCLUSIONS Among patients with AML, the detection of molecular minimal residual disease during complete remission had significant independent prognostic value with respect to relapse and survival rates, but the detection of persistent mutations that are associated with clonal hematopoiesis did not have such prognostic value within a 4-year time frame. (Funded by the Queen Wilhelmina Fund Foundation of the Dutch Cancer Society and others.)

    Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome

    No full text
    Substantial heterogeneity within mutant TP53 acute myeloid leukemia (AML) and myelodysplastic syndrome with excess of blast (MDS-EB) precludes the exact assessment of prognostic impact for individual patients. We performed in-depth clinical and molecular analysis of mutant TP53 AML and MDS-EB to dissect the molecular characteristics in detail and determine its impact on survival. We performed next-generation sequencing on 2200 AML/MDS-EB specimens and assessed the TP53 mutant allelic status (mono- or bi-allelic), the number of TP53 mutations, mutant TP53 clone size, concurrent mutations, cytogenetics, and mutant TP53 molecular minimal residual disease and studied the associations of these characteristics with overall survival. TP53 mutations were detected in 230 (10.5%) patients with AML/MDS-EB with a median variant allele frequency of 47%. Bi-allelic mutant TP53 status was observed in 174 (76%) patients. Multiple TP53 mutations were found in 49 (21%) patients. Concurrent mutations were detected in 113 (49%) patients. No significant difference in any of the aforementioned molecular characteristics of mutant TP53 was detected between AML and MDS-EB. Patients with mutant TP53 have a poor outcome (2-year overall survival, 12.8%); however, no survival difference between AML and MDS-EB was observed. Importantly, none of the molecular characteristics were significantly associated with survival in mutant TP53 AML/MDS-EB. In most patients, TP53 mutations remained detectable in complete remission by deep sequencing (73%). Detection of residual mutant TP53 was not associated with survival. Mutant TP53 AML and MDS-EB do not differ with respect to molecular characteristics and survival. Therefore, mutant TP53 AML/MDS-EB should be considered a distinct molecular disease entity
    corecore