44 research outputs found

    The Influences on and Impact of Economic and Community Development Policies in a Micropolitan City

    Get PDF
    As the U.S. economy changed from industry to information, small cities suffered a decline in quality of life and an increase in poverty. The existing research has focused on demographics and descriptive attributes of micropolitan cities, but not on efforts to overcome these challenges. The purpose of this study was to explore and understand how a micropolitan city used economic and community development policies to rebuild its economy and improve quality of life. Using Holland\u27s conceptualization of complex adaptive systems, research questions focused on triggers for policy creation and its use to create social change by improving the local economy and reducing the effects of poverty. Data for this qualitative case study were collected through open-ended questions in semi structured interviews with policymakers (elected officials), policy implementers (city employees), and policy influencers (community leaders). Interviews were supplemented with document review and photographic observation. The data were analyzed using descriptive coding, categorical aggregation, and direct interpretation to identify overarching themes of acceptance, resilience, building on strengths, and the interwoven nature of policy. The findings indicate that economic and community development policies can lead to positive changes such as the rehabilitation of blighted areas, growth of new and existing businesses, and influence state policy, illustrating the attributes of complex adaptive systems. The positive social change implications of this study include recommendations to city administrators to develop economic and community development policy based on their unique circumstances, to build partnerships, promote community change, and build a positive mindset to benefit their city and citizens

    Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)

    Get PDF
    Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary emissions undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2- MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m^3 chambers. Under high-NO_x conditions and aerosol mass loadings between 10 and 40μgm^(−3), the SOA yields (mass of SOA per mass of hydrocarbon reacted) ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39 for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for 1,2-DMN. Under low-NO_x conditions, the SOA yields were measured to be 0.73, 0.68, and 0.58, for naphthalene, 1- MN, and 2-MN, respectively. The SOA was observed to be semivolatile under high-NO_x conditions and essentially nonvolatile under low-NO_x conditions, owing to the higher fraction of ring-retaining products formed under low-NO_x conditions. When applying these measured yields to estimate SOA formation from primary emissions of diesel engines and wood burning, PAHs are estimated to yield 3–5 times more SOA than light aromatic compounds over photooxidation timescales of less than 12 h. PAHs can also account for up to 54% of the total SOA from oxidation of diesel emissions, representing a potentially large source of urban SOA

    Chemical Composition of Gas- and Aerosol-Phase Products from the Photooxidation of Naphthalene

    Get PDF
    The current work focuses on the detailed evolution of the chemical composition of both the gas- and aerosol-phase constituents produced from the OH-initiated photooxidation of naphthalene under low- and high-NO_x conditions. Under high-NO_x conditions ring-opening products are the primary gas-phase products, suggesting that the mechanism involves dissociation of alkoxy radicals (RO) formed through an RO_2 + NO pathway, or a bicyclic peroxy mechanism. In contrast to the high-NO_x chemistry, ring-retaining compounds appear to dominate the low-NO_x gas-phase products owing to the RO_2 + HO_2 pathway. We are able to chemically characterize 53−68% of the secondary organic aerosol (SOA) mass. Atomic oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios measured in bulk samples by high-resolution electrospray ionization time-of-flight mass spectrometry (HR-ESI-TOFMS) are the same as the ratios observed with online high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), suggesting that the chemical compositions and oxidation levels found in the chemically-characterized fraction of the particle phase are representative of the bulk aerosol. Oligomers, organosulfates (R-OSO_3), and other high-molecular-weight (MW) products are not observed in either the low- or high-NO_x SOA; however, in the presence of neutral ammonium sulfate seed aerosol, an organic sulfonic acid (R-SO_3), characterized as hydroxybenzene sulfonic acid, is observed in naphthalene SOA produced under both high- and low-NO_x conditions. Acidic compounds and organic peroxides are found to account for a large fraction of the chemically characterized high- and low-NO_x SOA. We propose that the major gas- and aerosol-phase products observed are generated through the formation and further reaction of 2-formylcinnamaldehyde or a bicyclic peroxy intermediate. The chemical similarity between the laboratory SOA and ambient aerosol collected from Birmingham, Alabama (AL) and Pasadena, California (CA) confirm the importance of PAH oxidation in the formation of aerosol within the urban atmosphere

    Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Get PDF
    The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol), major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NO_x (< 10 ppb) conditions using H_2O_2 as the OH source. Secondary organic aerosol (SOA) yields (ratio of mass of SOA formed to mass of primary organic reacted) greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C) ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010). An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach

    Photodissociation spectroscopy and dynamics of the CH(2)CFO radical

    Get PDF
    Alexandra A. Hoops, Jason R. Gascooke, Kathryn E. Kautzman, Ann Elise Faulhaber, and Daniel M. Neumar

    Knowledge and Perceptions of Couples' Voluntary Counseling and Testing in Urban Rwanda and Zambia: A Cross-Sectional Household Survey

    Get PDF
    Most incident HIV infections in sub-Saharan Africa occur between cohabiting, discordant, heterosexual couples. Though couples' voluntary HIV counseling and testing (CVCT) is an effective, well-studied intervention in Africa, <1% of couples have been jointly tested.We conducted cross-sectional household surveys in Kigali, Rwanda (n = 600) and Lusaka, Zambia (n = 603) to ascertain knowledge, perceptions, and barriers to use of CVCT.Compared to Lusaka, Kigali respondents were significantly more aware of HIV testing sites (79% vs. 56%); had greater knowledge of HIV serodiscordance between couples (83% vs. 43%); believed CVCT is good (96% vs. 72%); and were willing to test jointly (91% vs. 47%). Stigma, fear of partner reaction, and distance/cost/logistics were CVCT barriers.Though most respondents had positive attitudes toward CVCT, the majority were unaware that serodiscordance between cohabiting couples is possible. Future messages should target gaps in knowledge about serodiscordance, provide logistical information about CVCT services, and aim to reduce stigma and fear

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma
    corecore