31 research outputs found

    Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Get PDF
    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode

    Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    Get PDF
    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements

    Ray propagation path analysis of acousto-ultrasonic signals in composites

    Get PDF
    The most important result was the demonstration that acousto-ultrasonic (AU) energy introduced into a laminated graphite/resin propagates by two modes through the structure. The first mode, along the graphite fibers, is the faster. The second mode, through the resin matrix, besides being slower is also more strongly attenuated at the higher frequencies. This demonstration was accomplished by analyzing the time and frequency domain of the composite AU signal and comparing them to the same for a neat resin specimen of the same chemistry and geometry as the composite matrix. Analysis of the fine structure of AU spectra was accomplished by various geometrical strategies. It was shown that the multitude of narrow peaks associated with AU spectra are the effect of the many pulse arrivals in the signal. The shape and distribution of the peaks is mainly determined by the condition of nonnormal reflections of ray paths. A cepstrum analysis was employed which can be useful in detecting characteristic times. Analysis of propagation modes can be accomplished while ignoring the fine structure

    Nondestructive evaluation by acousto-ultrasonics

    Get PDF
    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters

    Acousto-Ultrasonic analysis of failure in ceramic matrix composite tensile specimens

    Get PDF
    Three types of acousto-ultrasonic (AU) measurements, stress-wave factor (SWF), lowest antisymmetric plate mode group velocity (VS), and lowest symmetric plate mode group velocity (VL), were performed on specimens before and after tensile failure. Three different Nicalon fiber architectures with ceramic matrices were tested. These composites were categorized as 1D (unidirectional fiber orientation) SiC/CAS glass ceramic, and 2D and 3D woven SiC/SiC ceramic matrix materials. SWF was found to be degraded after tensile failure in all three material categories. VS was found to be degraded only in the 1D SiC/CAS. VL was difficult to determine on the irregular specimen surfaces but appeared unchanged on all failed specimens. 3D woven specimens with heat-treatment at high temperature exhibited degradation only in SWF

    Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    Get PDF
    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given

    Nondestructive evaluation of advanced ceramics

    Get PDF
    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics

    A preliminary investigation of acousto-ultrasonic NDE of metal matrix composite test specimens

    Get PDF
    Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of 8 laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The following subject areas are covered: AU signal analysis; tensile behavior; AU and interrupted tensile tests; AU and thermally cycled specimens; AU and stiffness; and AU and specimen geometry

    Non-Contact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites

    Get PDF
    A 13 mJ NdYAG 1064 nm, 4 ns, laser pulse was employed to produce ultrasonic plate waves in 20 percent porous SiC/SiC composite tensile specimens of three different architectures. An air coupled 0.5 MHz transducer was used to detect and collect the waveforms which contained first antisymmetric plate wave pulses for determining the shear wave velocity (VS). These results were compared to VS values determined on the same specimens with 0.5 MHz ultrasonic transducers with contact coupling. Averages of four noncontact determinations on each of 18 specimens were compared to averages of four contact values. The noncontact VS's fall in the same range as the contact. The standard deviations for the noncontact VS's averaged 2.8 percent. The standard deviations for the contact measurements averaged 2.3 percent, indicating similar reproducibility. Repeated laser pulsing at the same location always lead to deterioration of the ulu-"nic signal. The signal would recover in about 24 hr in air however, indicating that no permanent damage was produced

    New acousto-ultrasonic techniques applied to aerospace materials

    Get PDF
    The use of an NdYAG pulsed laser for generating ultrasonic waves for NDE in resin matrix composites was investigated. A study was conducted of the use of the 1.064 micron wavelength NdYAG pulsed laser with the neat, unreinforced resin as well as graphite fiber/polymer composite specimens. In the case of the neat resins it was found that, at normal incidence, about 25 percent of the laser pulse energy was reflected at the incident surface. An attenuation coefficient for the polyimide resin, PMR-15 was determined to be approximately 5.8 np/cm. It was found in energy balance studies that graphite fiber/polymer specimens attenuate the laser beam more than do neat resins. The increase absorption is in the graphite fibers. The occurrence of laser induced surface damage was also studied. For the polymer neat resin, damage appears as pit formation over a small fraction of the pulse impact area and discoloration over a larger part of the area. A damage threshold was inferred from observed damage as a function of pulse energy. The 600 F cured PMR-15 and PMR-11 exhibit about the same amount of damage for a given laser pulse energy. The damage threshold is between 0.06 and 0.07 J/sq cm
    corecore