36 research outputs found

    Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators \u3ci\u3eBABY BOOM\u3c/i\u3e and \u3ci\u3eWUSCHEL2\u3c/i\u3e

    Get PDF
    The use of morphogenic regulators to overcome barriers in plant transformation is a revolutionary breakthrough for basic plant science and crop applications. Current standard plant transformation systems are bottlenecks for genetic, genomic, and crop improvement studies. We investigated the differential use of co-expression of maize transcription factors BABY BOOM and WUSCHEL2 coupled with a desiccation inducible CRE/lox excision system to enable regeneration of stable transgenic recalcitrant maize inbred B73 and sorghum P898012 without a chemical selectable marker. The PHP78891 expression cassette contains CRE driven by the drought inducible maize RAB17M promoter with lox P sites which bracket the CRE, WUS, and BBM genes. A constitutive maize UBIM promoter directs a ZsGreen GFP expression cassette as a reporter outside of the excision sites and provides transient, transgenic, and developmental analysis. This was coupled with evidence for molecular integration and analysis of stable integration and desiccation inducible CRE-mediated excision. Agrobacterium-mediated transgenic introduction of this vector showed transient expression of GFP and induced somatic embryogenesis in maize B73 and sorghum P898012 explants. Subjection to desiccation stress in tissue culture enabled the excision of CRE, WUS, and BBM, leaving the UBIM::GFP cassette and allowing subsequent plant regeneration and GFP expression analysis. Stable GFP expression was observed in the early and late somatic embryos, young shoots, vegetative plant organs, and pollen. Transgene integration and expression of GFP positive T0 plants were also analyzed using PCR and Southern blots. Progeny segregation analysis of primary events confirmed correlation between functional GFP expression and presence of the GFP transgene in T1 plants generated from self pollinations, indicating good transgene inheritance. This study confirms and extends the use of morphogenic regulators to overcome transformation barriers

    Use of b-glucuronidase reporter gene for gene expression analysis in turfgrasses

    Get PDF
    Abstract The b-glucuronidase (GUS) gene has been successfully used as a reporter gene in innumerable number of plant species. The functional GUS gene produces blue coloration in plants upon integration into the plant genome. Because of the ease it provides to analyze the gene expression (as no expensive equipment is needed), GUS gene is surely plant biotechnologist's first choice as a reporter gene. The turfgrass family contains the world's most economically important horticultural crops. There is a world-wide drive for genetic modification of grasses due to its huge economic importance. GUS gene can be transiently or stably expressed in grasses for the purpose of promoter analysis and to study tissue-specific and developmental gene expression. This paper summarizes the use of GUS gene for transient and stable expression studies in various turfgrass species

    Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Get PDF
    Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM) crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro) from a maize pollen-specific gene (Zm13) for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare) as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops

    Genomic Characterization of Interspecific Hybrids and an Admixture Population Derived from Panicum amarum × \u3cem\u3eP. virgatum\u3c/em\u3e

    Get PDF
    Switchgrass (Panicum virgatum L.) and its relatives are regarded as top bioenergy crop candidates; however, one critical barrier is the introduction of useful genetic diversity and the development of new cultivars and hybrids. Combining genomes from related cultivars and species provides an opportunity to introduce new traits. In switchgrass, a breeding advantage would be achieved by combining the genomes of intervarietal ecotypes or interspecific hybrids. The recovery of wide crosses, however, is often tedious and may involve complicated embryo rescue and numerous backcrosses. Here, we demonstrate a straightforward approach to wide crosses involving the use of a selectable transgene for recovery of interspecific [P. virgatum cv. Alamo × Panicum amarum Ell. var amarulum or Atlantic Coastal Panicgrass (ACP)] F1 hybrids followed by backcrossing to generate a nontransgenic admixture population. A nontransgenic herbicide-sensitive (HbS) admixture population of 83 F1BC1 progeny was analyzed by genotyping-by-sequencing (GBS) to characterize local ancestry, parental contribution, and patterns of recombination. These results demonstrate a widely applicable breeding strategy that makes use of transgenic selectable resistance to identify and recover true hybrids

    \u3cem\u3eIn situ\u3c/em\u3e embryo rescue for generation of wide intra- and interspecific hybrids of \u3cem\u3ePanicum virgatum\u3c/em\u3e L.

    Get PDF
    Wide crosses have been used for decades as a method for transferring novel genetic material and traits in plant breeding. Historically, many products of wide crosses require tedious and inefficient surgical embryo rescue prior to embryo abortion to recover single plantlets. We have utilized transgenic switchgrass (Panicum virgatum L. cv Alamo) as a pollen donor in conjunction with antibiotic or herbicide selection for recovery of intra-and interspecific F1 crosses by using developing ovules from the female parent and selecting for embryogenic cultures derived from the in situ immature embryo. Using this approach, several intravarietial crosses were generated between transgenic Alamo and the switchgrass varieties Kanlow, Blackwell and Cave-in-Rock as well as an interspecific cross with Atlantic coastal panicgrass. This procedure selected F1 embryogenic callus produced from the developing embryo contained within isolated immature ovules. Several clonal plants were successfully regenerated from each cross. Southern blot, PCR, phenotypic analyses and genomic analysis confirmed F1 hybrids. Using genotyping-bysequencing shows the hybridization of the recovered plants by determining the ratio of transgressive markers to total compared markers between parents and their potential offspring. The ratio of transgressive markers to total compared markers was significantly lower between parents and their predicted offspring than between parents and offspring unrelated to them. This approach provides the possibility to move useful transgenes into varieties that are recalcitrant to direct transformation which can be optionally segregated thus useful to create new hybrids, as well as recovery of wide crosses that are either difficult or impossible using traditional techniques

    Identification of the Maize Gravitropism Gene \u3ci\u3elazy plant1\u3c/i\u3e by a Transposon-Tagging Genome Resequencing Strategy

    Get PDF
    Since their initial discovery, transposons have been widely used as mutagens for forward and reverse genetic screens in a range of organisms. The problems of high copy number and sequence divergence among related transposons have often limited the efficiency at which tagged genes can be identified. A method was developed to identity the locations of Mutator (Mu) transposons in the Zea mays genome using a simple enrichment method combined with genome resequencing to identify transposon junction fragments. The sequencing library was prepared from genomic DNA by digesting with a restriction enzyme that cuts within a perfectly conserved motif of the Mu terminal inverted repeats (TIR). Paired-end reads containing Mu TIR sequences were computationally identified and chromosomal sequences flanking the transposon were mapped to the maize reference genome. This method has been used to identify Mu insertions in a number of alleles and to isolate the previously unidentified lazy plant1 (la1) gene. The la1 gene is required for the negatively gravitropic response of shoots and mutant plants lack the ability to sense gravity. Using bioinformatic and fluorescence microscopy approaches, we show that the la1 gene encodes a cell membrane and nuclear localized protein. Our Mu-Taq method is readily adaptable to identify the genomic locations of any insertion of a known sequence in any organism using any sequencing platform

    Control of sexuality by the \u3cem\u3esk1\u3c/em\u3e-encoded UDP-glycosyltransferase of maize

    Get PDF
    Sex determination in maize involves the production of staminate and pistillate florets from an initially bisexual floral meristem. Pistil elimination in staminate florets requires jasmonic acid signaling, and functional pistils are protected by the action of the silkless 1 (sk1) gene. The sk1 gene was identified and found to encode a previously uncharacterized family 1 uridine diphosphate glycosyltransferase that localized to the plant peroxisomes. Constitutive expression of an sk1 transgene protected all pistils in the plant, causing complete feminization, a gain-of-function phenotype that operates by blocking the accumulation of jasmonates. The segregation of an sk1 transgene was used to effectively control the production of pistillate and staminate inflorescences in maize plants

    Advancing Crop Transformation in the Era of Genome Editing

    Get PDF
    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized
    corecore