10 research outputs found

    Real‐world evidence on clinical outcomes of people with type 1 diabetes using open‐source and commercial automated insulin dosing systems: A systematic review

    Get PDF
    Aims: Several commercial and open-source automated insulin dosing (AID) systems have recently been developed and are now used by an increasing number of people with diabetes (PwD). This systematic review explored the current status of real-world evidence on the latest available AID systems in helping to understand their safety and effectiveness. Methods: A systematic review of real-world studies on the effect of commercial and open-source AID system use on clinical outcomes was conducted employing a devised protocol (PROSPERO ID 257354). Results: Of 441 initially identified studies, 21 published 2018-2021 were included: 12 for Medtronic 670G; one for Tandem Control-IQ; one for Diabeloop DBLG1; two for AndroidAPS; one for OpenAPS; one for Loop; three comparing various types of AID systems. These studies found that several types of AID systems improve Time-in-Range and haemoglobin A1c (HbA1c ) with minimal concerns around severe hypoglycaemia. These improvements were observed in open-source and commercially developed AID systems alike. Conclusions: Commercially developed and open-source AID systems represent effective and safe treatment options for PwD of several age groups and genders. Alongside evidence from randomized clinical trials, real-world studies on AID systems and their effects on glycaemic outcomes are a helpful method for evaluating their safety and effectiveness

    Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC

    Get PDF
    Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations

    Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan

    Get PDF
    Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan

    A time-resolved proteomic and prognostic map of COVID-19.

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    Proteomic and metallomic responses of Saccharomyces cerevisiae to perturbations of environmental metal availability

    No full text
    Metal ions are essential for many biochemical processes inside all living cells. Although decades of careful experimentation in various model systems has led to the discovery of numerous functions of the essential metals, systematic studies that investigate the interactions of metal ions with various components of living cells remain scarce. Therefore, this work was designed and conducted as a systems-scale experiment to determine the consequences of a perturbation in extracellular metal availability on the growth rate, intracellular metal concentration and protein abundance of a simple eukaryote - Saccharomyces cerevisiae. The results reveal novel inter-dependencies of the concentration of each essential metal on the availability of the others and system-wide changes in protein abundance that are specific enough to separate most proteome samples in accordance with the perturbation caused and can be used to generate novel hypotheses about protein function and protein-protein interactions. The data generated by this work comprise a novel resource of high quality and impact that will be immensely useful in the design and interpretation of future investigations of the role of each essential metal in various cellular processes. It paves the way for the inclusion of metal ions and their interactions with other biomolecules in standard models (and pedagogy) of cellular biochemistry. This thesis describes the discovery that perturbations in metal availability of essential metals can have a system-wide impact on cellular physiology, as exemplified by the differential expression of numerous metal-binding proteins, proteins mapping to multiple metabolic pathways, and the identification of ohnolog pairs that show negatively correlated abundance patterns when S. cerevisiae cells are cultivated in a range of perturbed environmental metal concentrations

    Real‐world evidence on clinical outcomes of people with type 1 diabetes using open‐source and commercial automated insulin dosing systems: A systematic review

    Get PDF
    Aims: Several commercial and open-source automated insulin dosing (AID) systems have recently been developed and are now used by an increasing number of people with diabetes (PwD). This systematic review explored the current status of real-world evidence on the latest available AID systems in helping to understand their safety and effectiveness. Methods: A systematic review of real-world studies on the effect of commercial and open-source AID system use on clinical outcomes was conducted employing a devised protocol (PROSPERO ID 257354). Results: Of 441 initially identified studies, 21 published 2018-2021 were included: 12 for Medtronic 670G; one for Tandem Control-IQ; one for Diabeloop DBLG1; two for AndroidAPS; one for OpenAPS; one for Loop; three comparing various types of AID systems. These studies found that several types of AID systems improve Time-in-Range and haemoglobin A1c (HbA1c ) with minimal concerns around severe hypoglycaemia. These improvements were observed in open-source and commercially developed AID systems alike. Conclusions: Commercially developed and open-source AID systems represent effective and safe treatment options for PwD of several age groups and genders. Alongside evidence from randomized clinical trials, real-world studies on AID systems and their effects on glycaemic outcomes are a helpful method for evaluating their safety and effectiveness

    Complement activation induces excessive T cell cytotoxicity in severe COVID-19.

    No full text
    Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19

    A proteomic survival predictor for COVID-19 patients in intensive care.

    No full text
    Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care

    A proteomic survival predictor for COVID-19 patients in intensive care.

    No full text
    Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care
    corecore