2,682 research outputs found

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1−x_{1-x}Lix_{x})2_2IrO3_3, 0≤x≤0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x≈0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat

    Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Get PDF
    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results

    Black Hole Entropy from Spin One Punctures

    Get PDF
    Recent suggestion, that the emission of a quantum of energy corresponding to the asymptotic value of quasinormal modes of a Schwarzschild black hole should be associated with the loss of spin one punctures from the black hole horizon, fixes the Immirzi parameter to a definite value. We show that saturating the horizon with spin one punctures reproduces the earlier formula for the black hole entropy, including the ln(area)ln (area) correction with definite coefficient (- 3/2) for large area.Comment: 4 pages. RevTe

    Spin-orbit tuned metal-insulator transitions in single-crystal Sr2Ir1-xRhxO4 (0\leqx\leq1)

    Full text link
    Sr2IrO4 is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr2RhO4 is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic and thermal properties reveals that substituting 4d Rh4+ (4d5) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr2Ir1-xRhxO4 featuring two major effects: (1) Light Rh doping (0\leqx\leq0.16) prompts a simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x=0. (2) However, with heavier Rh doping (0.24< x<0.85 (\pm0.05)) disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x=1. The intricacy of Sr2Ir1-xRhxO4 is further highlighted by comparison with Sr2Ir1-xRuxO4 where Ru4+(4d4) drives a direct crossover from the insulating to metallic states.Comment: 5 figure

    Quantum Aspects of Black Hole Entropy

    Get PDF
    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein-Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based N=2 supergravity are also discussed, albeit more briefly.Comment: 13 Pages Revtex with 3 eps figures; based on plenary talk given at the International Conference on Gravitation and Cosmology, Kharagpur, India, January, 2000 One reference adde

    Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity

    Get PDF
    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria.Pitié-Salpêtrière, Institut Pasteur (Paris)

    Influence of ion implantation on the magnetic and transport properties of manganite films

    Full text link
    We have used oxygen ions irradiation to generate controlled structural disorder in thin manganite films. Conductive atomic force microscopy CAFM), transport and magnetic measurements were performed to analyze the influence of the implantation process in the physical properties of the films. CAFM images show regions with different conductivity values, probably due to the random distribution of point defect or inhomogeneous changes of the local Mn3+/4+ ratio to reduce lattice strains of the irradiated areas. The transport and magnetic properties of these systems are interpreted in this context. Metal-insulator transition can be described in the frame of a percolative model. Disorder increases the distance between conducting regions, lowering the observed TMI. Point defect disorder increases localization of the carriers due to increased disorder and locally enhanced strain field. Remarkably, even with the inhomogeneous nature of the samples, no sign of low field magnetoresistance was found. Point defect disorder decreases the system magnetization but doesn t seem to change the magnetic transition temperature. As a consequence, an important decoupling between the magnetic and the metal-insulator transition is found for ion irradiated films as opposed to the classical double exchange model scenario.Comment: 27 pages, 11 Figure

    Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    Get PDF
    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes

    Notoph Gauge Theory: Superfield Formalism

    Full text link
    We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the "notoph" (i.e. the opposite of "photon") gauge field by Ogievetsky and Palubarinov way back in 1966-67. We briefly outline the problems involved in obtaining the absolute anticommutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.Comment: LaTeX file, 12 pages, Talk delivered at SQS'09 (BLTP, JINR, Dubna
    • …
    corecore