4,295 research outputs found

    Barkhausen-type noise in the resistance of antiferromagnetic Cr thin films

    Full text link
    We present an experimental study of the changes generated on the electrical resistance R(T)R(T) of epitaxial Cr thin films by the transformation of quantized spin density wave domains as the temperature is changed. A characteristic resistance noise appears only within the same temperature region where a cooling-warming cycle in R(T)R(T) displays hysteretic behavior. We propose an analysis based on an analogy with the Barkhausen noise seen in ferromagnets. There fluctuations in the magnetization M(H)M(H) occur when the magnetic field HH is swept. By mapping MΨ0M \rightarrow \Psi_0 and HTH \rightarrow T, where Ψ0\Psi_0 corresponds to the order parameter of the spin density wave, we generalize the Preisach model in terms of a random distribution of {\it resistive hysterons} to explain our results. These hysterons are related to distributions of quantized spin density wave domains with different sizes, local energies and number of nodes.Comment: 5 pages, 3 figures. To be published in Europhysics Letter

    Tailoring the ground state of the ferrimagnet La2Ni(Ni1/3Sb2/3)O6

    Get PDF
    We report on the magnetic and structural properties of La2Ni(Ni1/3Sb2/3)O6 in polycrystal, single crystal and thin film samples. We found that this material is a ferrimagnet (Tc ~ 100 K) which possesses a very distinctive and uncommon feature in its virgin curve of the hysteresis loops. We observe that bellow 20 K it lies outside the hysteresis cycle, and this feature was found to be an indication of a microscopically irreversible process possibly involving the interplay of competing antiferromagnetic interactions that hinder the initial movement of domain walls. This initial magnetic state is overcome by applying a temperature dependent characteristic field. Above this field, an isothermal magnetic demagnetization of the samples yield a ground state different from the initial thermally demagnetized one.Comment: 21 pages, 8 figures, submitted to JMM

    Heat-transfer tests on the Rockwell International space shuttle orbiter with and without simulated protuberances

    Get PDF
    Aerothermodynamic tests on the forward half of the Rockwell International Space Shuttle Orbiter Configuration 140C were conducted at Mach number 8. The phase-change paint and thin-skin thermocouple techniques were used to determine the aerodynamic heating rates on the Orbiter models during simulated atmospheric reentry. Smooth 0.04-scale models and models with scaled protuberances and indentations which simulated the windshields, cargo bay door hinges, vents, and thruster nozzles were tested over an angle-of-attack range from 20 to 45 deg at yaw angles from -5 to 5 deg and at Reynolds numbers, based on the total Orbiter scaled length, from 2.15 to 15.9 million. Comparisons of the model heat-transfer rates obtained with a smooth surface and with scaled protuberances are presented

    Black Hole Entropy from a Highly Excited Elementary String

    Get PDF
    Suggested correspondence between a black hole and a highly excited elementary string is explored. Black hole entropy is calculated by computing the density of states for an open excited string. We identify the square root of oscillator number of the excited string with Rindler energy of black hole to obtain an entropy formula which, not only agrees at the leading order with the Bekenstein-Hawking entropy, but also reproduces the logarithmic correction obtained for black hole entropy in the quantum geometry framework. This provides an additional supporting evidence for correspondence between black holes and strings.Comment: revtex, 4 page

    Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole

    Get PDF
    We derive an exact expression for the partition function of the Euclidean BTZ black hole. Using this, we show that for a black hole with large horizon area, the correction to the Bekenstein-Hawking entropy is 3/2log(Area)-3/2 log(Area), in agreement with that for the Schwarzschild black hole obtained in the canonical gravity formalism and also in a Lorentzian computation of BTZ black hole entropy. We find that the right expression for the logarithmic correction in the context of the BTZ black hole comes from the modular invariance associated with the toral boundary of the black hole.Comment: LaTeX, 10 pages, typos corrected, clarifications adde

    Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate

    No full text
    Accurate prediction of nonpremixed turbulent combustion using large eddy simulation(LES) requires detailed modeling of the mixing between fuel and oxidizer at scales finer than the LES filter resolution. In conserved scalar combustion models, the small scale mixing process is quantified by two parameters, the subfilter scalar variance and the subfilter scalar dissipation rate. The most commonly used models for these quantities assume a local equilibrium exists between production and dissipation of variance. Such an assumption has limited validity in realistic, technically relevant flow configurations. However, nonequilibrium models for variance and dissipation rate typically contain a model coefficient whose optimal value is unknown a priori for a given simulation. Furthermore, conventional dynamic procedures are not useful for estimating the value of this coefficient. In this work, an alternative dynamic procedure based on the transport equation for subfilter scalar variance is presented, along with a robust conditional averaging approach for evaluation of themodel coefficient. This dynamic nonequilibrium modeling approach is used for simulation of a turbulent lifted ethylene flame, previously studied using DNS by Yoo et al. (Proc. Comb. Inst., 2011). The predictions of the new model are compared to those of a static nonequilibrium modeling approach using an assumed model coefficient, as well as those of the equilibrium modeling approach. The equilibrium models are found to systematically underpredict both subfilter scalar variance and dissipation rate. Use of the dynamic procedure is shown to increase the accuracy of the nonequilibrium modeling approach. However, numerical errors that arise as a consequence of grid-based implicit filtering appear to degrade the accuracy of all three modeling options. Thus, while these results confirm the usefulness of the new dynamic model, they also show that the quality of subfilter model predictions depends on several factors extrinsic to the formulation of the subfilter model itself

    Strongly Inhomogeneous Phases and Non-Fermi Liquid Behavior in Randomly Depleted Kondo Lattices

    Full text link
    We investigate the low-temperature behavior of Kondo lattices upon random depletion of the local ff-moments, by using strong-coupling arguments and solving SU(NN) saddle-point equations on large lattices. For a large range of intermediate doping levels, between the coherent Fermi liquid of the dense lattice and the single-impurity Fermi liquid of the dilute limit, we find strongly inhomogeneous states that exhibit distinct non-Fermi liquid characteristics. In particular, the interplay of dopant disorder and strong interactions leads to rare weakly screened moments which dominate the bulk susceptibility. Our results are relevant to compounds like Ce_{x}La_{1-x}CoIn_5 and Ce_{x}La_{1-x}Pb_3Comment: 4 pages, 5 figure

    Two-dimensional frustrated spin systems in high magnetic fields

    Full text link
    We discuss our numerical results on the properties of the S = 1/2 frustrated J1-J2 Heisenberg model on a square lattice as a function of temperature and frustration angle phi = atan(J2/J1) in an applied magnetic field. We cover the full phase diagram of the model in the range -pi <= phi <= pi. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally.Comment: 4 pages, 5 figures, proceedings of RHMF 200

    Spin fluctuations with two-dimensional XY behavior in a frustrated S = 1/2 square-lattice ferromagnet

    Get PDF
    The spin dynamics of the layered square-lattice vanadate Pb2VO(PO4)2 is investigated by electron spin resonance at various magnetic fields and at temperatures above magnetic ordering. The linewidth divergence towards low temperatures seems to agree with isotropic Heisenberg-type spin exchange suggesting that the spin relaxation in this quasi-two dimensional compound is governed by low-dimensional quantum fluctuations. However, a weak easy- plane anisotropy of the g factor points to the presence of a planar XY type of exchange. Indeed, we found that the linewidth divergence is described best by XY-like spin fluctuations which requires a single parameter only. Therefore, ESR-probed spin dynamics could establish Pb2VO(PO4)2 as the first frustrated square lattice system with XY-inherent spin topological fluctuations.Comment: 5 pages, 3 figure
    corecore