88 research outputs found

    Primordialists and Constructionists: a typology of theories of religion

    Get PDF
    This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research

    Four-gene Pan-African Blood Signature Predicts Progression to Tuberculosis.

    Get PDF
    Contacts of tuberculosis (TB) patients constitute an important target population for preventative measures as they are at high risk of infection with Mycobacterium tuberculosis and progression to disease. We investigated biosignatures with predictive ability for incident tuberculosis. In a case-control study nested within the Grand Challenges 6-74 longitudinal HIV-negative African cohort of exposed household contacts, we employed RNA sequencing, polymerase chain reaction (PCR) and the Pair Ratio algorithm in a training/test set approach. Overall, 79 progressors, who developed tuberculosis between 3 and 24 months following exposure, and 328 matched non-progressors, who remained healthy during 24 months of follow-up, were investigated. A four-transcript signature (RISK4), derived from samples in a South African and Gambian training set, predicted progression up to two years before onset of disease in blinded test set samples from South Africa, The Gambia and Ethiopia with little population-associated variability and also validated on an external cohort of South African adolescents with latent Mycobacterium tuberculosis infection. By contrast, published diagnostic or prognostic tuberculosis signatures predicted on samples from some but not all 3 countries, indicating site-specific variability. Post-hoc meta-analysis identified a single gene pair, C1QC/TRAV27, that would consistently predict TB progression in household contacts from multiple African sites but not in infected adolescents without known recent exposure events. Collectively, we developed a simple whole blood-based PCR test to predict tuberculosis in household contacts from diverse African populations, with potential for implementation in national TB contact investigation programs

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Henoch-Sch�nlein purpura with ileitis terminalis

    No full text

    Competing claims in public space: the construction of frames in different relational contexts

    No full text
    • …
    corecore